/************************************************************************************//** * \file Demo/ARMCM4_STM32G4_Nucleo_G474RE_GCC/Prog/boot.c * \brief Demo program bootloader interface source file. * \ingroup Prog_ARMCM4_STM32G4_Nucleo_G474RE_GCC * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2021 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "header.h" /* generic header */ /**************************************************************************************** * Function prototypes ****************************************************************************************/ #if (BOOT_COM_RS232_ENABLE > 0) static void BootComRs232Init(void); static void BootComRs232CheckActivationRequest(void); #endif #if (BOOT_COM_CAN_ENABLE > 0) static void BootComCanInit(void); static void BootComCanCheckActivationRequest(void); #endif /************************************************************************************//** ** \brief Initializes the communication interface. ** \return none. ** ****************************************************************************************/ void BootComInit(void) { #if (BOOT_COM_RS232_ENABLE > 0) BootComRs232Init(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanInit(); #endif } /*** end of BootComInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ void BootComCheckActivationRequest(void) { #if (BOOT_COM_RS232_ENABLE > 0) BootComRs232CheckActivationRequest(); #endif #if (BOOT_COM_CAN_ENABLE > 0) BootComCanCheckActivationRequest(); #endif } /*** end of BootComCheckActivationRequest ***/ /************************************************************************************//** ** \brief Bootloader activation function. ** \return none. ** ****************************************************************************************/ void BootActivate(void) { /* perform software reset to activate the bootoader again */ NVIC_SystemReset(); } /*** end of BootActivate ***/ #if (BOOT_COM_RS232_ENABLE > 0) /**************************************************************************************** * U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Timeout time for the reception of a CTO packet. The timer is started upon * reception of the first packet byte. */ #define RS232_CTO_RX_PACKET_TIMEOUT_MS (100u) /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief UART handle to be used in API calls. */ static UART_HandleTypeDef rs232Handle; /**************************************************************************************** * Function prototypes ****************************************************************************************/ static unsigned char Rs232ReceiveByte(unsigned char *data); /************************************************************************************//** ** \brief Initializes the UART communication interface. ** \return none. ** ****************************************************************************************/ static void BootComRs232Init(void) { /* Configure UART peripheral. */ rs232Handle.Instance = USART2; rs232Handle.Init.BaudRate = BOOT_COM_RS232_BAUDRATE; rs232Handle.Init.WordLength = UART_WORDLENGTH_8B; rs232Handle.Init.StopBits = UART_STOPBITS_1; rs232Handle.Init.Parity = UART_PARITY_NONE; rs232Handle.Init.HwFlowCtl = UART_HWCONTROL_NONE; rs232Handle.Init.Mode = UART_MODE_TX_RX; rs232Handle.Init.OverSampling = UART_OVERSAMPLING_16; rs232Handle.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE; rs232Handle.Init.ClockPrescaler = UART_PRESCALER_DIV8; rs232Handle.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT; /* Initialize the UART peripheral. */ HAL_UART_Init(&rs232Handle); } /*** end of BootComRs232Init ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComRs232CheckActivationRequest(void) { static unsigned char xcpCtoReqPacket[BOOT_COM_RS232_RX_MAX_DATA+1]; static unsigned char xcpCtoRxLength; static unsigned char xcpCtoRxInProgress = 0; static unsigned long xcpCtoRxStartTime = 0; /* start of cto packet received? */ if (xcpCtoRxInProgress == 0) { /* store the message length when received */ if (Rs232ReceiveByte(&xcpCtoReqPacket[0]) == 1) { /* check that the length has a valid value. it should not be 0 */ if ( (xcpCtoReqPacket[0] > 0) && (xcpCtoReqPacket[0] <= BOOT_COM_RS232_RX_MAX_DATA) ) { /* store the start time */ xcpCtoRxStartTime = TimerGet(); /* indicate that a cto packet is being received */ xcpCtoRxInProgress = 1; /* reset packet data count */ xcpCtoRxLength = 0; } } } else { /* store the next packet byte */ if (Rs232ReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1) { /* increment the packet data count */ xcpCtoRxLength++; /* check to see if the entire packet was received */ if (xcpCtoRxLength == xcpCtoReqPacket[0]) { /* done with cto packet reception */ xcpCtoRxInProgress = 0; /* check if this was an XCP CONNECT command */ if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoRxLength == 2)) { /* connection request received so start the bootloader */ BootActivate(); } } } else { /* check packet reception timeout */ if (TimerGet() > (xcpCtoRxStartTime + RS232_CTO_RX_PACKET_TIMEOUT_MS)) { /* cancel cto packet reception due to timeout. note that this automatically * discards the already received packet bytes, allowing the host to retry. */ xcpCtoRxInProgress = 0; } } } } /*** end of BootComRs232CheckActivationRequest ***/ /************************************************************************************//** ** \brief Receives a communication interface byte if one is present. ** \param data Pointer to byte where the data is to be stored. ** \return 1 if a byte was received, 0 otherwise. ** ****************************************************************************************/ static unsigned char Rs232ReceiveByte(unsigned char *data) { HAL_StatusTypeDef result; /* receive a byte in a non-blocking manner */ result = HAL_UART_Receive(&rs232Handle, data, 1, 0); /* process the result */ if (result == HAL_OK) { /* success */ return 1; } /* error occurred */ return 0; } /*** end of Rs232ReceiveByte ***/ #endif /* BOOT_COM_RS232_ENABLE > 0 */ #if (BOOT_COM_CAN_ENABLE > 0) /**************************************************************************************** * C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E ****************************************************************************************/ /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type for grouping CAN bus timing related information. */ typedef struct t_can_bus_timing { unsigned char tseg1; /**< CAN time segment 1 */ unsigned char tseg2; /**< CAN time segment 2 */ } tCanBusTiming; /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief CAN bittiming table for dynamically calculating the bittiming settings. * \details According to the CAN protocol 1 bit-time can be made up of between 8..25 * time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC * always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) * * 100%. This array contains possible and valid time quanta configurations with * a sample point between 68..78%. */ static const tCanBusTiming canTiming[] = { /* TQ | TSEG1 | TSEG2 | SP */ /* ------------------------- */ { 5, 2 }, /* 8 | 5 | 2 | 75% */ { 6, 2 }, /* 9 | 6 | 2 | 78% */ { 6, 3 }, /* 10 | 6 | 3 | 70% */ { 7, 3 }, /* 11 | 7 | 3 | 73% */ { 8, 3 }, /* 12 | 8 | 3 | 75% */ { 9, 3 }, /* 13 | 9 | 3 | 77% */ { 9, 4 }, /* 14 | 9 | 4 | 71% */ { 10, 4 }, /* 15 | 10 | 4 | 73% */ { 11, 4 }, /* 16 | 11 | 4 | 75% */ { 12, 4 }, /* 17 | 12 | 4 | 76% */ { 12, 5 }, /* 18 | 12 | 5 | 72% */ { 13, 5 }, /* 19 | 13 | 5 | 74% */ { 14, 5 }, /* 20 | 14 | 5 | 75% */ { 15, 5 }, /* 21 | 15 | 5 | 76% */ { 15, 6 }, /* 22 | 15 | 6 | 73% */ { 16, 6 }, /* 23 | 16 | 6 | 74% */ { 16, 7 }, /* 24 | 16 | 7 | 71% */ { 16, 8 } /* 25 | 16 | 8 | 68% */ }; /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief CAN handle to be used in API calls. */ static FDCAN_HandleTypeDef canHandle; /************************************************************************************//** ** \brief Search algorithm to match the desired baudrate to a possible bus ** timing configuration. ** \param baud The desired baudrate in kbps. Valid values are 10..1000. ** \param prescaler Pointer to where the value for the prescaler will be stored. ** \param tseg1 Pointer to where the value for TSEG2 will be stored. ** \param tseg2 Pointer to where the value for TSEG2 will be stored. ** \return 1 if the CAN bustiming register values were found, 0 otherwise. ** ****************************************************************************************/ static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler, unsigned char *tseg1, unsigned char *tseg2) { unsigned char cnt; unsigned long canClockFreqkHz; /* determine the CAN peripheral clock frequency in kHz. this code assumes that the * HSE is used as the CAN clock source. If not, then update the code accordingly. */ canClockFreqkHz = BOOT_CPU_XTAL_SPEED_KHZ; /* the CAN clock source should not be higher than 48 MHz. so only continue if this is * the case. */ if (canClockFreqkHz <= 48000u) { /* loop through all possible time quanta configurations to find a match */ for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++) { if ((canClockFreqkHz % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0) { /* compute the prescaler that goes with this TQ configuration */ *prescaler = canClockFreqkHz/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1)); /* make sure the prescaler is valid */ if ( (*prescaler > 0) && (*prescaler <= 512) ) { /* store the bustiming configuration */ *tseg1 = canTiming[cnt].tseg1; *tseg2 = canTiming[cnt].tseg2; /* found a good bus timing configuration */ return 1; } } } } /* could not find a good bus timing configuration */ return 0; } /*** end of CanGetSpeedConfig ***/ /************************************************************************************//** ** \brief Initializes the CAN communication interface. ** \return none. ** ****************************************************************************************/ static void BootComCanInit(void) { unsigned short prescaler = 0; unsigned char tseg1 = 0, tseg2 = 0; FDCAN_FilterTypeDef filterConfig; unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID; /* obtain bittiming configuration information. */ CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2); /* set the CAN controller configuration. */ canHandle.Instance = FDCAN1; canHandle.Init.ClockDivider = FDCAN_CLOCK_DIV1; canHandle.Init.FrameFormat = FDCAN_FRAME_CLASSIC; canHandle.Init.Mode = FDCAN_MODE_NORMAL; canHandle.Init.AutoRetransmission = ENABLE; canHandle.Init.TransmitPause = DISABLE; canHandle.Init.ProtocolException = DISABLE; canHandle.Init.NominalPrescaler = prescaler; canHandle.Init.NominalSyncJumpWidth = 1; canHandle.Init.NominalTimeSeg1 = tseg1; canHandle.Init.NominalTimeSeg2 = tseg2; /* FD mode is not used by this driver, so the .Init.DataXxx values are don't care. */ canHandle.Init.DataPrescaler = 1; canHandle.Init.DataSyncJumpWidth = 1; canHandle.Init.DataTimeSeg1 = 1; canHandle.Init.DataTimeSeg2 = 1; /* does the message to be received have a standard 11-bit CAN identifier? */ if ((rxMsgId & 0x80000000) == 0) { canHandle.Init.StdFiltersNbr = 1; canHandle.Init.ExtFiltersNbr = 0; } else { canHandle.Init.StdFiltersNbr = 0; canHandle.Init.ExtFiltersNbr = 1; } canHandle.Init.TxFifoQueueMode = FDCAN_TX_FIFO_OPERATION; /* initialize the CAN controller. this only fails if the CAN controller hardware is * faulty. no need to evaluate the return value as there is nothing we can do about * a faulty CAN controller. */ (void)HAL_FDCAN_Init(&canHandle); /* configure the reception filter. note that the implementation of this function * always returns HAL_OK as long as the CAN controller is initialized, so no need to * evaluate the return value. */ if ((rxMsgId & 0x80000000) == 0) { filterConfig.IdType = FDCAN_STANDARD_ID; } else { filterConfig.IdType = FDCAN_EXTENDED_ID; /* negate the ID-type bit */ rxMsgId &= ~0x80000000; } filterConfig.FilterIndex = 0; filterConfig.FilterType = FDCAN_FILTER_DUAL; filterConfig.FilterConfig = FDCAN_FILTER_TO_RXFIFO0; filterConfig.FilterID1 = rxMsgId; filterConfig.FilterID2 = rxMsgId; (void)HAL_FDCAN_ConfigFilter(&canHandle, &filterConfig); /* configure global filter to reject all non-matching frames. */ HAL_FDCAN_ConfigGlobalFilter(&canHandle, FDCAN_REJECT, FDCAN_REJECT, FDCAN_REJECT_REMOTE, FDCAN_REJECT_REMOTE); /* start the CAN peripheral. no need to evaluate the return value as there is nothing * we can do about a faulty CAN controller. */ (void)HAL_FDCAN_Start(&canHandle); } /*** end of BootComCanInit ***/ /************************************************************************************//** ** \brief Receives the CONNECT request from the host, which indicates that the ** bootloader should be activated and, if so, activates it. ** \return none. ** ****************************************************************************************/ static void BootComCanCheckActivationRequest(void) { unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID; unsigned char packetIdMatches = 0; FDCAN_RxHeaderTypeDef rxMsgHeader; unsigned char rxMsgData[8]; unsigned char rxMsgLen; HAL_StatusTypeDef rxStatus = HAL_ERROR; /* poll for received CAN messages that await processing. */ if (HAL_FDCAN_GetRxFifoFillLevel(&canHandle, FDCAN_RX_FIFO0) > 0) { /* attempt to read the newly received CAN message from its buffer. */ rxStatus = HAL_FDCAN_GetRxMessage(&canHandle, FDCAN_RX_FIFO0, &rxMsgHeader, rxMsgData); } /* only continue processing the CAN message if something was received. */ if (rxStatus == HAL_OK) { /* check if this message has the configured CAN packet identifier. */ if ((rxMsgId & 0x80000000) == 0) { /* was an 11-bit CAN message received that matches? */ if ( (rxMsgHeader.Identifier == rxMsgId) && (rxMsgHeader.IdType == FDCAN_STANDARD_ID) ) { /* set flag that a packet with a matching CAN identifier was received. */ packetIdMatches = 1; } } else { /* negate the ID-type bit */ rxMsgId &= ~0x80000000; /* was an 29-bit CAN message received that matches? */ if ( (rxMsgHeader.Identifier == rxMsgId) && (rxMsgHeader.IdType == FDCAN_EXTENDED_ID) ) { /* set flag that a packet with a matching CAN identifier was received. */ packetIdMatches = 1; } } /* only continue if a packet with a matching CAN identifier was received. */ if (packetIdMatches == 1) { /* obtain the CAN message length. */ rxMsgLen = (unsigned char)(rxMsgHeader.DataLength >> 16U); /* check if this was an XCP CONNECT command */ if ((rxMsgData[0] == 0xff) && (rxMsgLen == 2)) { /* connection request received so start the bootloader */ BootActivate(); } } } } /*** end of BootComCanCheckActivationRequest ***/ #endif /* BOOT_COM_CAN_ENABLE > 0 */ /*********************************** end of boot.c *************************************/