/************************************************************************************//** * \file Source/ARMCM33_STM32U5/flash.c * \brief Bootloader flash driver source file. * \ingroup Target_ARMCM33_STM32U5 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2023 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #include "stm32u5xx.h" /* STM32 CPU and HAL header */ #include "stm32u5xx_ll_icache.h" /* STM32 LL internal cache header */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Value for an invalid sector entry index into flashLayout[]. */ #define FLASH_INVALID_SECTOR_IDX (0xff) /** \brief Value for an invalid flash address. */ #define FLASH_INVALID_ADDRESS (0xffffffff) /** \brief Standard size of a flash block for writing. */ #define FLASH_WRITE_BLOCK_SIZE (1024) /** \brief Total numbers of sectors in array flashLayout[]. */ #define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0])) /** \brief End address of the bootloader programmable flash. */ #define FLASH_END_ADDRESS (flashLayout[FLASH_TOTAL_SECTORS-1].sector_start + \ flashLayout[FLASH_TOTAL_SECTORS-1].sector_size - 1) #ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET /** \brief Offset into the user program's vector table where the checksum is located. * For this target it is set to the end of the vector table. Note that the * value can be overriden in blt_conf.h, because the size of the vector table * could vary. When changing this value, don't forget to update the location * of the checksum in the user program accordingly. Otherwise the checksum * verification will always fail. */ #define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x234) #endif /**************************************************************************************** * Plausibility checks ****************************************************************************************/ #if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE) #error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block." #endif #ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE #define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u) #endif /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Flash sector descriptor type. */ typedef struct { blt_addr sector_start; /**< sector start address */ blt_int32u sector_size; /**< sector size in bytes */ } tFlashSector; /** \brief Structure type for grouping flash block information. * \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a * flash block manager is implemented in this driver. this flash block manager * depends on this flash block info structure. It holds the base address of * the flash block and the data that should be programmed into the flash * block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE. */ typedef struct { blt_addr base_addr; blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; } tFlashBlockInfo; /**************************************************************************************** * Hook functions ****************************************************************************************/ #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) extern blt_bool FlashCryptoDecryptDataHook(blt_addr address, blt_int8u * data, blt_int32u size); #endif /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address); static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr); static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len); static blt_bool FlashWriteBlock(tFlashBlockInfo *block); static blt_bool FlashEmptyCheckSector(blt_int8u sector_idx); static blt_bool FlashEraseSectors(blt_int8u first_sector_idx, blt_int8u last_sector_idx); static blt_int8u FlashGetSectorIdx(blt_addr address); static blt_int32u FlashGetBank(blt_addr address); static blt_int32u FlashGetPage(blt_addr address); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0 * in blt_conf.h and then implement your own version of the flashLayout[] table * in a source-file with the name flash_layout.c. This way you customize the * flash memory size reserved for the bootloader, without having to modify * the flashLayout[] table in this file directly. This file will then include * flash_layout.c so there is no need to compile it additionally with your * project. */ #if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0) /** \brief Array wit the layout of the flash memory. * \details Also controls what part of the flash memory is reserved for the bootloader. * If the bootloader size changes, the reserved sectors for the bootloader * might need adjustment to make sure the bootloader doesn't get overwritten. */ static const tFlashSector flashLayout[] = { /* { 0x08000000, 0x02000 }, flash sector 0 - reserved for bootloader */ /* { 0x08002000, 0x02000 }, flash sector 1 - reserved for bootloader */ /* { 0x08004000, 0x02000 }, flash sector 2 - reserved for bootloader */ /* { 0x08006000, 0x02000 }, flash sector 3 - reserved for bootloader */ { 0x08008000, 0x02000 }, /* flash sector 4 - 8kb */ { 0x0800A000, 0x02000 }, /* flash sector 5 - 8kb */ { 0x0800C000, 0x02000 }, /* flash sector 6 - 8kb */ { 0x0800E000, 0x02000 }, /* flash sector 7 - 8kb */ { 0x08010000, 0x02000 }, /* flash sector 8 - 8kb */ { 0x08012000, 0x02000 }, /* flash sector 9 - 8kb */ { 0x08014000, 0x02000 }, /* flash sector 10 - 8kb */ { 0x08016000, 0x02000 }, /* flash sector 11 - 8kb */ { 0x08018000, 0x02000 }, /* flash sector 12 - 8kb */ { 0x0801A000, 0x02000 }, /* flash sector 13 - 8kb */ { 0x0801C000, 0x02000 }, /* flash sector 14 - 8kb */ { 0x0801E000, 0x02000 }, /* flash sector 15 - 8kb */ #if (BOOT_NVM_SIZE_KB > 128) { 0x08020000, 0x20000 }, /* flash sector 16 - 128kb */ #endif #if (BOOT_NVM_SIZE_KB > 256) { 0x08040000, 0x20000 }, /* flash sector 17 - 128kb */ { 0x08060000, 0x20000 }, /* flash sector 18 - 128kb */ #endif #if (BOOT_NVM_SIZE_KB > 512) { 0x08080000, 0x20000 }, /* flash sector 19 - 128kb */ { 0x080A0000, 0x20000 }, /* flash sector 20 - 128kb */ { 0x080C0000, 0x20000 }, /* flash sector 21 - 128kb */ { 0x080E0000, 0x20000 }, /* flash sector 22 - 128kb */ #endif #if (BOOT_NVM_SIZE_KB > 1024) { 0x08100000, 0x20000 }, /* flash sector 23 - 128kb */ { 0x08120000, 0x20000 }, /* flash sector 24 - 128kb */ { 0x08140000, 0x20000 }, /* flash sector 25 - 128kb */ { 0x08160000, 0x20000 }, /* flash sector 26 - 128kb */ { 0x08180000, 0x20000 }, /* flash sector 27 - 128kb */ { 0x081A0000, 0x20000 }, /* flash sector 28 - 128kb */ { 0x081C0000, 0x20000 }, /* flash sector 29 - 128kb */ { 0x081E0000, 0x20000 }, /* flash sector 30 - 128kb */ #endif #if (BOOT_NVM_SIZE_KB > 2048) { 0x08200000, 0x20000 }, /* flash sector 31 - 128kb */ { 0x08220000, 0x20000 }, /* flash sector 32 - 128kb */ { 0x08240000, 0x20000 }, /* flash sector 33 - 128kb */ { 0x08260000, 0x20000 }, /* flash sector 34 - 128kb */ { 0x08280000, 0x20000 }, /* flash sector 35 - 128kb */ { 0x082A0000, 0x20000 }, /* flash sector 36 - 128kb */ { 0x082C0000, 0x20000 }, /* flash sector 37 - 128kb */ { 0x082E0000, 0x20000 }, /* flash sector 38 - 128kb */ { 0x08300000, 0x20000 }, /* flash sector 39 - 128kb */ { 0x08320000, 0x20000 }, /* flash sector 40 - 128kb */ { 0x08340000, 0x20000 }, /* flash sector 41 - 128kb */ { 0x08360000, 0x20000 }, /* flash sector 42 - 128kb */ { 0x08380000, 0x20000 }, /* flash sector 43 - 128kb */ { 0x083A0000, 0x20000 }, /* flash sector 44 - 128kb */ { 0x083C0000, 0x20000 }, /* flash sector 45 - 128kb */ { 0x083E0000, 0x20000 }, /* flash sector 46 - 128kb */ #endif #if (BOOT_NVM_SIZE_KB > 4096) #error "BOOT_NVM_SIZE_KB > 4096 is currently not supported." #endif }; #else #include "flash_layout.c" #endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */ /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief Local variable with information about the flash block that is currently * being operated on. * \details The smallest amount of flash that can be programmed is * FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver * and stores info in this variable. Whenever new data should be flashed, it * is first added to a RAM buffer, which is part of this variable. Whenever * the RAM buffer, which has the size of a flash block, is full or data needs * to be written to a different block, the contents of the RAM buffer are * programmed to flash. The flash block manager requires some software * overhead, yet results is faster flash programming because data is first * harvested, ideally until there is enough to program an entire flash block, * before the flash device is actually operated on. */ static tFlashBlockInfo blockInfo; /** \brief Local variable with information about the flash boot block. * \details The first block of the user program holds the vector table, which on the * STM32 is also the where the checksum is written to. Is it likely that * the vector table is first flashed and then, at the end of the programming * sequence, the checksum. This means that this flash block need to be written * to twice. Normally this is not a problem with flash memory, as long as you * write the same values to those bytes that are not supposed to be changed * and the locations where you do write to are still in the erased 0xFF state. * Unfortunately, writing twice to flash this way, does not work reliably on * all micros. This is why we need to have an extra block, the bootblock, * placed under the management of the block manager. This way is it possible * to implement functionality so that the bootblock is only written to once * at the end of the programming sequence. */ static tFlashBlockInfo bootBlockInfo; /************************************************************************************//** ** \brief Initializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashInit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; /* make sure the instruction cache is disabled prior to updating cacheable memory. */ LL_ICACHE_Disable(); } /*** end of FlashInit ***/ /************************************************************************************//** ** \brief Reinitializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashReinit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashReinit ***/ /************************************************************************************//** ** \brief Writes the data to flash through a flash block manager. Note that this ** function also checks that no data is programmed outside the flash ** memory region, so the bootloader can never be overwritten. ** \param addr Start address. ** \param len Length in bytes. ** \param data Pointer to the data buffer. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) { blt_bool result = BLT_TRUE; blt_addr base_addr; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { result = BLT_FALSE; } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* make sure the addresses are within the flash device */ if ((FlashGetSectorIdx(addr) == FLASH_INVALID_SECTOR_IDX) || \ (FlashGetSectorIdx(addr+len-1) == FLASH_INVALID_SECTOR_IDX)) { result = BLT_FALSE; } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* if this is the bootblock, then let the boot block manager handle it */ base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; if (base_addr == flashLayout[0].sector_start) { /* let the boot block manager handle it */ result = FlashAddToBlock(&bootBlockInfo, addr, data, len); } else { /* let the block manager handle it */ result = FlashAddToBlock(&blockInfo, addr, data, len); } } /* give the result back to the caller */ return result; } /*** end of FlashWrite ***/ /************************************************************************************//** ** \brief Erases the flash memory. Note that this function also checks that no ** data is erased outside the flash memory region, so the bootloader can ** never be erased. ** \param addr Start address. ** \param len Length in bytes. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashErase(blt_addr addr, blt_int32u len) { blt_bool result = BLT_TRUE; blt_int8u first_sector_idx; blt_int8u last_sector_idx; /* validate the len parameter */ if ((len - 1) > (FLASH_END_ADDRESS - addr)) { result = BLT_FALSE; } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* obtain the first and last sector entry indices to the flashLayout[] array. */ first_sector_idx = FlashGetSectorIdx(addr); last_sector_idx = FlashGetSectorIdx(addr+len-1); /* check them */ if ((first_sector_idx == FLASH_INVALID_SECTOR_IDX) || (last_sector_idx == FLASH_INVALID_SECTOR_IDX)) { result = BLT_FALSE; } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* erase the sectors */ result = FlashEraseSectors(first_sector_idx, last_sector_idx); } /* give the result back to the caller */ return result; } /*** end of FlashErase ***/ /************************************************************************************//** ** \brief Writes a checksum of the user program to non-volatile memory. This is ** performed once the entire user program has been programmed. Through ** the checksum, the bootloader can check if the programming session ** was completed, which indicates that a valid user programming is ** present and can be started. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWriteChecksum(void) { blt_bool result = BLT_TRUE; blt_int32u signature_checksum = 0; /* for the STM32 target we defined the checksum as the Two's complement value of the * sum of the first 7 exception addresses. * * Layout of the vector table: * 0x08000000 Initial stack pointer * 0x08000004 Reset Handler * 0x08000008 NMI Handler * 0x0800000C Hard Fault Handler * 0x08000010 MPU Fault Handler * 0x08000014 Bus Fault Handler * 0x08000018 Usage Fault Handler * * signature_checksum = Two's complement of (SUM(exception address values)) * * the bootloader writes this 32-bit checksum value right after the vector table * of the user program. note that this means one extra dummy entry must be added * at the end of the user program's vector table to reserve storage space for the * checksum. */ /* first check that the bootblock contains valid data. if not, this means the * bootblock is not part of the reprogramming this time and therefore no * new checksum needs to be written */ if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS) { #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) /* perform decryption of the bootblock, before calculating the checksum and writing it * to flash memory. */ if (FlashCryptoDecryptDataHook(bootBlockInfo.base_addr, bootBlockInfo.data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { result = BLT_FALSE; } #endif /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* compute the checksum. note that the user program's vectors are not yet written * to flash but are present in the bootblock data structure at this point. */ signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x00])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x04])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x08])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x0C])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x10])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x14])); signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x18])); signature_checksum = ~signature_checksum; /* one's complement */ signature_checksum += 1; /* two's complement */ /* write the checksum */ result = FlashWrite(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET, sizeof(blt_addr), (blt_int8u *)&signature_checksum); } } /* give the result back to the caller */ return result; } /*** end of FlashWriteChecksum ***/ /************************************************************************************//** ** \brief Verifies the checksum, which indicates that a valid user program is ** present and can be started. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashVerifyChecksum(void) { blt_bool result = BLT_TRUE; blt_int32u signature_checksum = 0; /* verify the checksum based on how it was written by FlashWriteChecksum(). */ signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x04)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x08)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x0C)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x10)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x14)); signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x18)); /* add the checksum value that was written by FlashWriteChecksum(). Since this was a * Two complement's value, the resulting value should equal 0. */ signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET)); /* sum should add up to an unsigned 32-bit value of 0 */ if (signature_checksum != 0) { /* checksum not okay */ result = BLT_FALSE; } /* give the result back to the caller */ return result; } /*** end of FlashVerifyChecksum ***/ /************************************************************************************//** ** \brief Finalizes the flash driver operations. There could still be data in ** the currently active block that needs to be flashed. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashDone(void) { blt_bool result = BLT_TRUE; /* check if there is still data waiting to be programmed in the boot block */ if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE) { /* update the result value to flag the error */ result = BLT_FALSE; } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* check if there is still data waiting to be programmed */ if (blockInfo.base_addr != FLASH_INVALID_ADDRESS) { if (FlashWriteBlock(&blockInfo) == BLT_FALSE) { /* update the result value to flag the error */ result = BLT_FALSE; } } } /* give the result back to the caller */ return result; } /*** end of FlashDone ***/ /************************************************************************************//** ** \brief Obtains the base address of the flash memory available to the user program. ** This is basically the first address in the flashLayout table. ** \return Base address. ** ****************************************************************************************/ blt_addr FlashGetUserProgBaseAddress(void) { blt_addr result; result = flashLayout[0].sector_start; /* give the result back to the caller */ return result; } /*** end of FlashGetUserProgBaseAddress ***/ /************************************************************************************//** ** \brief Copies data currently in flash to the block->data and sets the ** base address. ** \param block Pointer to flash block info structure to operate on. ** \param address Base address of the block data. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address) { blt_bool result = BLT_TRUE; /* check address alignment */ if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) { /* update the result value to flag the error */ result = BLT_FALSE; } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* make sure that we are initializing a new block and not the same one */ if (block->base_addr != address) { /* set the base address and copies the current data from flash */ block->base_addr = address; CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE); } } /* give the result back to the caller */ return result; } /*** end of FlashInitBlock ***/ /************************************************************************************//** ** \brief Switches blocks by programming the current one and initializing the ** next. ** \param block Pointer to flash block info structure to operate on. ** \param base_addr Base address of the next block. ** \return The pointer of the block info struct that is now being used, or a NULL ** pointer in case of error. ** ****************************************************************************************/ static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr) { tFlashBlockInfo * result = BLT_NULL; /* check if a switch needs to be made away from the boot block. in this case the boot * block shouldn't be written yet, because this is done at the end of the programming * session by FlashDone(), this is right after the checksum was written. */ if (block == &bootBlockInfo) { /* switch from the boot block to the generic block info structure */ block = &blockInfo; result = block; } /* check if a switch back into the bootblock is needed. in this case the generic block * doesn't need to be written here yet. */ else if (base_addr == flashLayout[0].sector_start) { /* switch from the generic block to the boot block info structure */ block = &bootBlockInfo; base_addr = flashLayout[0].sector_start; result = block; } /* no switching between the generic block and the bootblock needed. it is a switch * within a generic block. the current block needs to be first programmed before a * switch to the new one can be make. */ else { /* start by initializing the result to success */ result = block; /* need to switch to a new block, so program the current one and init the next */ if (FlashWriteBlock(block) == BLT_FALSE) { /* invalidate the result value to flag the error */ result = BLT_NULL; } } /* only continue if all is okay sofar */ if (result != BLT_NULL) { /* initialize the new block when necessary */ if (FlashInitBlock(block, base_addr) == BLT_FALSE) { /* invalidate the result value to flag the error */ result = BLT_NULL; } } /* Give the result back to the caller. */ return result; } /*** end of FlashSwitchBlock ***/ /************************************************************************************//** ** \brief Programming is done per block. This function adds data to the block ** that is currently collecting data to be written to flash. If the ** address is outside of the current block, the current block is written ** to flash an a new block is initialized. ** \param block Pointer to flash block info structure to operate on. ** \param address Flash destination address. ** \param data Pointer to the byte array with data. ** \param len Number of bytes to add to the block. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len) { blt_bool result = BLT_TRUE; blt_addr current_base_addr; blt_int8u *dst; blt_int8u *src; /* determine the current base address */ current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { /* initialize the blockInfo struct for the current block */ if (FlashInitBlock(block, current_base_addr) == BLT_FALSE) { result = BLT_FALSE; } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* check if the new data fits in the current block */ if (block->base_addr != current_base_addr) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr); if (block == BLT_NULL) { result = BLT_FALSE; } } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* add the data to the current block, but check for block overflow */ dst = &(block->data[address - block->base_addr]); src = data; do { /* keep the watchdog happy */ CopService(); /* buffer overflow? */ if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); if (block == BLT_NULL) { /* flag error and stop looping */ result = BLT_FALSE; break; } /* reset destination pointer */ dst = &(block->data[0]); } /* write the data to the buffer */ *dst = *src; /* update pointers */ dst++; src++; /* decrement byte counter */ len--; } while (len > 0); } /* give the result back to the caller */ return result; } /*** end of FlashAddToBlock ***/ /************************************************************************************//** ** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data ** array. ** \param block Pointer to flash block info structure to operate on. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashWriteBlock(tFlashBlockInfo *block) { blt_bool result = BLT_TRUE; blt_addr prog_addr; blt_int32u data_addr; blt_int32u qword_cnt; const blt_int8u qword_byte_num = 16U; blt_addr word_addr; blt_int32u word_data; blt_int32u word_cnt; /* check that the address is actually within flash */ if (FlashGetSectorIdx(block->base_addr) == FLASH_INVALID_SECTOR_IDX) { result = BLT_FALSE; } #if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0) #if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0) /* note that the bootblock is already decrypted in FlashWriteChecksum(), if the * internal checksum mechanism is used. Therefore don't decrypt it again. */ if (block != &bootBlockInfo) #endif { /* perform decryption of the program data before writing it to flash memory. */ if (FlashCryptoDecryptDataHook(block->base_addr, block->data, FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE) { result = BLT_FALSE; } } #endif /* only continue with programming if all is okay so far */ if (result == BLT_TRUE) { /* unlock the flash peripheral to enable the flash control register access */ HAL_FLASH_Unlock(); /* program all quad words (128 bits = 16 bytes) in the block one by one */ for (qword_cnt=0; qword_cnt<(FLASH_WRITE_BLOCK_SIZE/qword_byte_num); qword_cnt++) { /* calculate the destination address in flash of this quad word */ prog_addr = block->base_addr + (qword_cnt * qword_byte_num); /* set the base address in ram that holds the data to program */ data_addr = (blt_int32u)(&block->data[qword_cnt * qword_byte_num]); /* keep the watchdog happy */ CopService(); /* program the quad word data at 'data_addr' to memory address 'prog_addr' */ if (HAL_FLASH_Program(FLASH_TYPEPROGRAM_QUADWORD, prog_addr, data_addr) != HAL_OK) { result = BLT_FALSE; break; } } /* lock the flash peripheral to disable the flash control register access */ HAL_FLASH_Lock(); } /* only continue with verification if all is okay so far */ if (result == BLT_TRUE) { /* keep the watchdog happy */ CopService(); /* verify all words in the block one by one */ for (word_cnt=0; word_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(blt_int32u)); word_cnt++) { word_addr = block->base_addr + (word_cnt * sizeof(blt_int32u)); word_data = *(volatile blt_int32u *)(&block->data[word_cnt * sizeof(blt_int32u)]); /* verify that the written data is actually there. */ if (*(volatile blt_int32u *)word_addr != word_data) { result = BLT_FALSE; break; } } } /* give the result back to the caller */ return result; } /*** end of FlashWriteBlock ***/ /************************************************************************************//** ** \brief Checks if the flash sector is already completely erased. ** \param sector_idx flash sector number index into flashLayout[]. ** \return BLT_TRUE if the flash sector is already erased, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashEmptyCheckSector(blt_int8u sector_idx) { blt_bool result = BLT_TRUE; blt_addr sectorAddr; blt_int32u sectorSize; blt_int32u wordCnt; blt_int32u volatile const * wordPtr; /* retrieve sector info */ sectorAddr = flashLayout[sector_idx].sector_start; sectorSize = flashLayout[sector_idx].sector_size; /* sanity check. sector base address should be 32-bit aligned and the size * should be a multiple of 32-bits. */ ASSERT_RT(((sectorAddr % sizeof(blt_int32u)) == 0) && ((sectorSize % sizeof(blt_int32u)) == 0)); /* initialize the pointer to the first word in the sector */ wordPtr = (blt_int32u volatile const *)sectorAddr; /* read sector 32-bits at a time */ for (wordCnt = 0; wordCnt < (sectorSize/sizeof(blt_int32u)); wordCnt++) { /* service the watchdog every 256th loop iteration */ if ((wordCnt % 256) == 0) { CopService(); } /* word not in the erased state? */ if (*wordPtr != 0xFFFFFFFFu) { /* sector not empty, update the result accordingly */ result = BLT_FALSE; /* no point in continuing the sector empty check */ break; } /* set pointer to the next word in the sector */ wordPtr++; } /* give the result back to the caller. */ return result; } /*** end of FlashEmptyCheckSector ***/ /************************************************************************************//** ** \brief Erases the flash sectors from indices first_sector_idx up until ** last_sector_idx into the flashLayout[] array. ** \param first_sector_idx First flash sector number index into flashLayout[]. ** \param last_sector_idx Last flash sector number index into flashLayout[]. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashEraseSectors(blt_int8u first_sector_idx, blt_int8u last_sector_idx) { blt_bool result = BLT_TRUE; blt_int8u sectorIdx; blt_addr sectorBaseAddr; blt_int32u sectorSize; FLASH_EraseInitTypeDef eraseInitStruct; uint32_t pageEraseError = 0; uint32_t sectorBank; uint32_t sectorFirstPage; uint32_t sectorTotalPages; /* validate the sector numbers */ if (first_sector_idx > last_sector_idx) { result = BLT_FALSE; } /* only continue if all is okay so far */ if (result == BLT_TRUE) { if (last_sector_idx > (FLASH_TOTAL_SECTORS-1)) { result = BLT_FALSE; } } /* only continue if all is okay so far */ if (result == BLT_TRUE) { /* unlock the flash peripheral to enable the flash control register access. */ HAL_FLASH_Unlock(); /* erase the sectors one by one */ for (sectorIdx = first_sector_idx; sectorIdx <= last_sector_idx; sectorIdx++) { /* no need to erase the sector if it is already empty */ if (FlashEmptyCheckSector(sectorIdx) == BLT_FALSE) { /* service the watchdog */ CopService(); /* get information about the sector */ sectorBaseAddr = flashLayout[sectorIdx].sector_start; sectorSize = flashLayout[sectorIdx].sector_size; /* validate the sector information */ if ( (sectorBaseAddr == FLASH_INVALID_ADDRESS) || (sectorSize == 0) ) { /* invalid sector information. flag error and abort erase operation */ result = BLT_FALSE; break; } /* assert that the sector size is an exact multiple of the page size */ ASSERT_RT((sectorSize % FLASH_PAGE_SIZE) == 0); /* determine how many pages the sector contains */ sectorTotalPages = sectorSize / FLASH_PAGE_SIZE; /* determine the flash bank that the sector falls into */ sectorBank = FlashGetBank(sectorBaseAddr); /* determine the page number of the first page in the sector */ sectorFirstPage = FlashGetPage(sectorBaseAddr); /* prepare the information for the erase operation */ eraseInitStruct.TypeErase = FLASH_TYPEERASE_PAGES; eraseInitStruct.Banks = sectorBank; eraseInitStruct.Page = sectorFirstPage; eraseInitStruct.NbPages = sectorTotalPages; /* perform the flash erase operation of the sector */ if (HAL_FLASHEx_Erase(&eraseInitStruct, &pageEraseError) != HAL_OK) { /* could not perform erase operation */ result = BLT_FALSE; /* error detected so don't bother continuing with the loop */ break; } } } /* lock the flash peripheral to disable the flash control register access. */ HAL_FLASH_Lock(); } /* give the result back to the caller */ return result; } /*** end of FlashEraseSectors ***/ /************************************************************************************//** ** \brief Determines the index into the flashLayout[] array of the flash sector that ** the specified address is in. ** \param address Address in the flash sector. ** \return Flash sector index in flashLayout[] or FLASH_INVALID_SECTOR_IDX. ** ****************************************************************************************/ static blt_int8u FlashGetSectorIdx(blt_addr address) { blt_int8u result = FLASH_INVALID_SECTOR_IDX; blt_int8u sectorIdx; /* search through the sectors to find the right one */ for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++) { /* keep the watchdog happy */ CopService(); /* is the address in this sector? */ if ((address >= flashLayout[sectorIdx].sector_start) && \ (address < (flashLayout[sectorIdx].sector_start + \ flashLayout[sectorIdx].sector_size))) { /* update the result value and stop looping */ result = sectorIdx; break; } } /* give the result back to the caller */ return result; } /*** end of FlashGetSectorIdx ***/ /************************************************************************************//** ** \brief Determines the flash bank that the address belongs to. ** \param address Flash memory address. ** \return FLASH_BANK_1 if the address belongs to bank 1, FLASH_BANK_2 otherwise. ** ****************************************************************************************/ static blt_int32u FlashGetBank(blt_addr address) { blt_int32u result = FLASH_BANK_1; /* assert that the address is actually a valid flash address */ ASSERT_RT(address >= FLASH_BASE); ASSERT_RT((address - FLASH_BASE) < FLASH_SIZE); /* is the address in bank 2? */ if ((address - FLASH_BASE) >= FLASH_BANK_SIZE) { /* update the result */ result = FLASH_BANK_2; } /* give the result back to the caller */ return result; } /** end of FlashGetBank ***/ /************************************************************************************//** ** \brief Determines the flash page that the address belongs to. ** \param address Flash memory address. ** \return Page number. ** ****************************************************************************************/ static blt_int32u FlashGetPage(blt_addr address) { blt_int32u result = 0; /* assert that the address is actually a valid flash address */ ASSERT_RT(address >= FLASH_BASE); ASSERT_RT((address - FLASH_BASE) < FLASH_SIZE); /* does the address fall in the first bank? */ if (FlashGetBank(address) == FLASH_BANK_1) { /* determine the page number */ result = (address - FLASH_BASE) / FLASH_PAGE_SIZE; } /* address falls in the second bank */ else { /* determine the page number */ result = (address - (FLASH_BASE + FLASH_BANK_SIZE)) / FLASH_PAGE_SIZE; } /* give the result back to the caller */ return result; } /*** end of FlashGetPage ***/ /*********************************** end of flash.c ************************************/