/************************************************************************************//** * \file Source\HCS12\flash.c * \brief Bootloader flash driver source file. * \ingroup Target_HCS12 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Value for an invalid flash sector. */ #define FLASH_INVALID_SECTOR_IDX (0xff) /** \brief Value for an invalid flash address. */ #define FLASH_INVALID_ADDRESS (0xffffffff) /** \brief Standard size of a flash block for writing. */ #define FLASH_WRITE_BLOCK_SIZE (512) /** \brief Total numbers of sectors in array flashLayout[]. */ #define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0])) #define FLASH_LAST_SECTOR_IDX (FLASH_TOTAL_SECTORS-1) #define FLASH_ERASE_BLOCK_SIZE (512) /** \brief Offset into the user program's vector table where the checksum is located. */ #define FLASH_VECTOR_TABLE_CS_OFFSET (0x82) /** \brief Total size of the vector table, excluding the bootloader specific checksum. */ #define FLASH_VECTOR_TABLE_SIZE (0x80) /** \brief Start address of the bootloader programmable flash. */ #define FLASH_START_ADDRESS (flashLayout[0].sector_start) /** \brief End address of the bootloader programmable flash. */ #define FLASH_END_ADDRESS (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \ flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - 1) /** \brief Size of a flash page on the HCS12. */ #define FLASH_PAGE_SIZE (0x4000) /* flash page size in bytes */ /** \brief Physical start address of the HCS12 page window. */ #define FLASH_PAGE_OFFSET (0x8000) /* physical start addr. of pages */ /** \brief PPAGE register to select a specific flash page. */ #define FLASH_PPAGE_REG (*(volatile blt_int8u *)(0x0030)) /** \brief Base address of the flash related control registers. */ #define FLASH_REGS_BASE_ADDRESS (0x0100) /** \brief Macro for accessing the flash related control registers. */ #define FLASH ((volatile tFlashRegs *)FLASH_REGS_BASE_ADDRESS) /** \brief Program word flash command. */ #define FLASH_PROGRAM_WORD_CMD (0x20) /** \brief Erase sector flash command. */ #define FLASH_ERASE_SECTOR_CMD (0x40) #if (BOOT_NVM_SIZE_KB > 256) /** \brief Number of flash pages in a block. */ #define FLASH_PAGES_PER_BLOCK (8) #else /** \brief Number of flash pages in a block. */ #define FLASH_PAGES_PER_BLOCK (4) #endif /** \brief Bitmask for selecting a block with flash pages. */ #define FLASH_BLOCK_SEL_MASK (0x03) /**************************************************************************************** * Register definitions ****************************************************************************************/ /** \brief FCLKDIV - enable prescaler by 8 bit. */ #define PRDIV8_BIT (0x40) /** \brief FSTAT - flash access error bit. */ #define ACCERR_BIT (0x10) /** \brief FSTAT - protection violation bit. */ #define PVIOL_BIT (0x20) /** \brief FSTAT - command buffer empty flag bit. */ #define CBEIF_BIT (0x80) /** \brief FCNFG - command buf. empty irq enable bit. */ #define CBEIE_BIT (0x80) /** \brief FCNFG - command complete irg enable bit. */ #define CCIE_BIT (0x40) /** \brief FCNFG - enable security key writing bit. */ #define KEYACC_BIT (0x20) /**************************************************************************************** * Plausibility checks ****************************************************************************************/ #ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE #define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u) #endif /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type for the flash sectors in the flash layout table. */ typedef struct { blt_addr sector_start; /**< sector start address */ blt_int32u sector_size; /**< sector size in bytes */ } tFlashSector; /** \brief Structure type for grouping flash block information. * \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a * flash block manager is implemented in this driver. this flash block manager * depends on this flash block info structure. It holds the base address of * the flash block and the data that should be programmed into the flash * block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE. */ typedef struct { blt_addr base_addr; blt_int8u data[FLASH_WRITE_BLOCK_SIZE]; } tFlashBlockInfo; /** \brief Structure type for the flash control registers. */ typedef volatile struct { volatile blt_int8u fclkdiv; /**< flash clock devider register */ volatile blt_int8u fsec; /**< flash security register */ volatile blt_int8u ftstmod; /**< flash test mode register */ volatile blt_int8u fcnfg; /**< flash configuration register */ volatile blt_int8u fprot; /**< flash protection register */ volatile blt_int8u fstat; /**< flash status register */ volatile blt_int8u fcmd; /**< flash command register */ } tFlashRegs; /** \brief Pointer type to flash command execution function. */ typedef void (*pFlashExeCmdFct)(void); /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address); static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr); static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len); static blt_bool FlashWriteBlock(tFlashBlockInfo *block); static blt_int8u FlashGetLinearAddrByte(blt_addr addr); static blt_int8u FlashGetPhysPage(blt_addr addr); static blt_int16u FlashGetPhysAddr(blt_addr addr); static void FlashExecuteCommand(void); static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u data); /**************************************************************************************** * Local constant declarations ****************************************************************************************/ /** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0 * in blt_conf.h and then implement your own version of the flashLayout[] table * in a source-file with the name flash_layout.c. This way you customize the * flash memory size reserved for the bootloader, without having to modify * the flashLayout[] table in this file directly. This file will then include * flash_layout.c so there is no need to compile it additionally with your * project. */ #if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0) /** \brief Array wit the layout of the flash memory. * \details Also controls what part of the flash memory is reserved for the bootloader. * If the bootloader size changes, the reserved sectors for the bootloader * might need adjustment to make sure the bootloader doesn't get overwritten. * This layout uses linear addresses only. For example, the first address on * page 0x3F is: 0x3F * 0x4000 (page size) = 0xFC000. Note that page 0x3F is * where the bootloader also resides and it has been entered as 8 chunks of 2kb. * This allows flexibility for reserving more/less space for the bootloader in * case its size changes in the future. */ static const tFlashSector flashLayout[] = { #if (BOOT_NVM_SIZE_KB > 512) #error "BOOT_NVM_SIZE_KB > 512 is currently not supported." #endif #if (BOOT_NVM_SIZE_KB >= 512) { 0x80000, 0x4000 }, /* flash page 0x20 - 16kb */ { 0x84000, 0x4000 }, /* flash page 0x21 - 16kb */ { 0x88000, 0x4000 }, /* flash page 0x22 - 16kb */ { 0x8C000, 0x4000 }, /* flash page 0x23 - 16kb */ { 0x90000, 0x4000 }, /* flash page 0x24 - 16kb */ { 0x94000, 0x4000 }, /* flash page 0x25 - 16kb */ { 0x98000, 0x4000 }, /* flash page 0x26 - 16kb */ { 0x9C000, 0x4000 }, /* flash page 0x27 - 16kb */ { 0xA0000, 0x4000 }, /* flash page 0x28 - 16kb */ { 0xA4000, 0x4000 }, /* flash page 0x29 - 16kb */ { 0xA8000, 0x4000 }, /* flash page 0x2A - 16kb */ { 0xAC000, 0x4000 }, /* flash page 0x2B - 16kb */ { 0xB0000, 0x4000 }, /* flash page 0x2C - 16kb */ { 0xB4000, 0x4000 }, /* flash page 0x2D - 16kb */ { 0xB8000, 0x4000 }, /* flash page 0x2E - 16kb */ { 0xBC000, 0x4000 }, /* flash page 0x2F - 16kb */ #endif #if (BOOT_NVM_SIZE_KB >= 256) { 0xC0000, 0x4000 }, /* flash page 0x30 - 16kb */ { 0xC4000, 0x4000 }, /* flash page 0x31 - 16kb */ { 0xC8000, 0x4000 }, /* flash page 0x32 - 16kb */ { 0xCC000, 0x4000 }, /* flash page 0x33 - 16kb */ { 0xD0000, 0x4000 }, /* flash page 0x34 - 16kb */ { 0xD4000, 0x4000 }, /* flash page 0x35 - 16kb */ { 0xD8000, 0x4000 }, /* flash page 0x36 - 16kb */ { 0xDC000, 0x4000 }, /* flash page 0x37 - 16kb */ #endif #if (BOOT_NVM_SIZE_KB >= 128) { 0xE0000, 0x4000 }, /* flash page 0x38 - 16kb */ { 0xE4000, 0x4000 }, /* flash page 0x39 - 16kb */ #endif #if (BOOT_NVM_SIZE_KB >= 96) { 0xE8000, 0x4000 }, /* flash page 0x3A - 16kb */ { 0xEC000, 0x4000 }, /* flash page 0x3B - 16kb */ #endif #if (BOOT_NVM_SIZE_KB >= 64) { 0xF0000, 0x4000 }, /* flash page 0x3C - 16kb */ { 0xF4000, 0x4000 }, /* flash page 0x3D - 16kb */ #endif { 0xF8000, 0x4000 }, /* flash page 0x3E - 16kb */ { 0xFC000, 0x0800 }, /* flash page 0x3F - 2kb */ { 0xFC800, 0x0800 }, /* flash page 0x3F - 2kb */ { 0xFD000, 0x0800 }, /* flash page 0x3F - 2kb */ { 0xFD800, 0x0800 }, /* flash page 0x3F - 2kb */ { 0xFE000, 0x0800 }, /* flash page 0x3F - 2kb */ /* { 0xFE800, 0x0800 }, flash page 0x3F - reserved for bootloader */ /* { 0xFF000, 0x0800 }, flash page 0x3F - reserved for bootloader */ /* { 0xFF800, 0x0800 }, flash page 0x3F - reserved for bootloader */ }; #else #include "flash_layout.c" #endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */ /** \brief Array with executable code for performing flash operations. * \details This array contains the machine code to perform the actual command on the * flash device, such as program or erase. the code is compiler and location * independent. This allows us to copy it to a ram buffer and execute the code * from ram. This way the flash driver can be located in flash memory without * running into problems when erasing/programming the same flash block that * contains the flash driver. the source code for the machine code is as * follows: * // launch the command * FLASH->fstat = CBEIF_BIT; * // wait at least 4 cycles (per AN2720) * asm("nop"); * asm("nop"); * asm("nop"); * asm("nop"); * // wait for command to complete * while ((FLASH->fstat & CCIF_BIT) != CCIF_BIT); */ static const blt_int8u flashExecCmd[] = { /* asm("psha"); backup A */ 0x36, /* asm("pshx"); backup X */ 0x34, /* asm("ldx #0x100"); load flash register base in X */ 0xce, 0x01, 0x00, /* asm("leax 5,x"); point X to FSTAT register */ 0x1a, 0x05, /* asm("ldaa #0x80"); load CBEIF mask in A */ 0x86, 0x80, /* asm("staa 0,x"); set CBEIF bit in FSTAT to launch the command */ 0x6a, 0x00, /* asm("nop"); [4 times] wait at least 4 cycles */ 0xa7,0xa7, 0xa7, 0xa7, /* asm("brclr 0,x,#0x40,*"); wait for command completion: CCIF in FSTAT equals 1 */ 0x0f, 0x00, 0x40, 0xfc, /* asm("pulx"); restore X */ 0x30, /* asm("pula"); restore A */ 0x32, /* asm("rts"); return */ 0x3d }; /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief Local variable with information about the flash block that is currently * being operated on. * \details The smallest amount of flash that can be programmed is * FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver * and stores info in this variable. Whenever new data should be flashed, it * is first added to a RAM buffer, which is part of this variable. Whenever * the RAM buffer, which has the size of a flash block, is full or data needs * to be written to a different block, the contents of the RAM buffer are * programmed to flash. The flash block manager requires some software * overhead, yet results is faster flash programming because data is first * harvested, ideally until there is enough to program an entire flash block, * before the flash device is actually operated on. */ static tFlashBlockInfo blockInfo; /** \brief Local variable with information about the flash boot block. * \details The first block of the user program holds the vector table, which on the * STM32 is also the where the checksum is written to. Is it likely that * the vector table is first flashed and then, at the end of the programming * sequence, the checksum. This means that this flash block need to be written * to twice. Normally this is not a problem with flash memory, as long as you * write the same values to those bytes that are not supposed to be changed * and the locations where you do write to are still in the erased 0xFF state. * Unfortunately, writing twice to flash this way, does not work reliably on * all micros. This is why we need to have an extra block, the bootblock, * placed under the management of the block manager. This way is it possible * to implement functionality so that the bootblock is only written to once * at the end of the programming sequence. */ static tFlashBlockInfo bootBlockInfo; /** \brief RAM buffer where the executable flash operation code is copied to. */ static blt_int8u flashExecCmdRam[(sizeof(flashExecCmd)/sizeof(flashExecCmd[0]))]; /** \brief Maximum number of supported blocks, which is determined dynamically to have * code that is independent of the used HCS12 derivative. */ static blt_int8u flashMaxNrBlocks; /************************************************************************************//** ** \brief Initializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashInit(void) { blt_bool result = BLT_FALSE; blt_int8u cnt; blt_int8u prescaler = 1; blt_int16u clockFreq; /* flash EEPROM programming requires a minimal system speed of 1 MHz */ ASSERT_CT(BOOT_CPU_SYSTEM_SPEED_KHZ >= 1000); /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; /* determine how many flash blocks this device supports by first trying to set all * all block selection bits. on devices where a specific block is not supported, * the bit is reserved and will read back 0 afterwards */ FLASH->fcnfg |= FLASH_BLOCK_SEL_MASK; /* read back which ones got set */ flashMaxNrBlocks = (FLASH->fcnfg & FLASH_BLOCK_SEL_MASK) + 1; /* set back to default reset value */ FLASH->fcnfg &= ~(CBEIE_BIT | CCIE_BIT | KEYACC_BIT | FLASH_BLOCK_SEL_MASK); /* enable extra prescale factor of 8 when the external crystal is > 12.8 MHz */ if (BOOT_CPU_XTAL_SPEED_KHZ > 12800) { prescaler = 8; } /* FDIV[5..0] can only be between 0 and 63 so do a linear search to find the correct * setting. */ for (cnt = 0; cnt <= 63; cnt++) { /* calculate current clock: FCLK = Fexternal_clock / (1 + FDIV[5..0]) */ clockFreq = BOOT_CPU_XTAL_SPEED_KHZ / (prescaler * (1 + cnt)); /* is this a valid setting? */ if ((clockFreq > 150) && (clockFreq < 200)) { /* configure the setting while taking into account the prescaler */ if (prescaler == 8) { FLASH->fclkdiv = (PRDIV8_BIT | cnt); } else { FLASH->fclkdiv = cnt; } /* all done */ result = BLT_TRUE; break; } } /* make sure that a valid clock divider was found */ ASSERT_RT(result == BLT_TRUE); } /*** end of FlashInit ***/ /************************************************************************************//** ** \brief Reinitializes the flash driver. ** \return none. ** ****************************************************************************************/ void FlashReinit(void) { /* init the flash block info structs by setting the address to an invalid address */ blockInfo.base_addr = FLASH_INVALID_ADDRESS; bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS; } /*** end of FlashReinit ***/ /************************************************************************************//** ** \brief Writes the data to flash through a flash block manager. Note that this ** function also checks that no data is programmed outside the flash ** memory region, so the bootloader can never be overwritten. ** \param addr Start address. ** \param len Length in bytes. ** \param data Pointer to the data buffer. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data) { blt_addr base_addr; blt_addr last_block_base_addr; /* make sure the addresses are within the flash device */ if ((addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS)) { return BLT_FALSE; } /* determine the start address of the last block in flash */ last_block_base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \ flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \ FLASH_WRITE_BLOCK_SIZE; /* if this is the bootblock, then let the boot block manager handle it */ base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; if (base_addr == last_block_base_addr) { /* let the boot block manager handle it */ return FlashAddToBlock(&bootBlockInfo, addr, data, len); } /* let the block manager handle it */ return FlashAddToBlock(&blockInfo, addr, data, len); } /*** end of FlashWrite ***/ /************************************************************************************//** ** \brief Erases the flash memory. Note that this function also checks that no ** data is erased outside the flash memory region, so the bootloader can ** never be erased. ** \param addr Start address. ** \param len Length in bytes. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool FlashErase(blt_addr addr, blt_int32u len) { blt_addr erase_base_addr; blt_int16u nr_of_erase_blocks; blt_int32u total_erase_len; blt_int16u block_cnt; /* determine the base address for the erase operation, by aligning to * FLASH_ERASE_BLOCK_SIZE. */ erase_base_addr = (addr/FLASH_ERASE_BLOCK_SIZE)*FLASH_ERASE_BLOCK_SIZE; /* make sure the addresses are within the flash device */ if ((erase_base_addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS)) { return BLT_FALSE; } /* determine number of bytes to erase from base address */ total_erase_len = len + (addr - erase_base_addr); /* determine the number of blocks to erase */ nr_of_erase_blocks = (blt_int16u)(total_erase_len / FLASH_ERASE_BLOCK_SIZE); if ((total_erase_len % FLASH_ERASE_BLOCK_SIZE) > 0) { nr_of_erase_blocks++; } /* erase all blocks one by one */ for (block_cnt=0; block_cntdata and sets the ** base address. ** \param block Pointer to flash block info structure to operate on. ** \param address Base address of the block data. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address) { blt_int8u oldPage; /* check address alignment */ if ((address % FLASH_WRITE_BLOCK_SIZE) != 0) { return BLT_FALSE; } /* make sure that we are initializing a new block and not the same one */ if (block->base_addr == address) { /* block already initialized, so nothing to do */ return BLT_TRUE; } /* set the base address */ block->base_addr = address; /* backup originally selected page */ oldPage = FLASH_PPAGE_REG; /* select correct page */ FLASH_PPAGE_REG = FlashGetPhysPage(address); /* copy the current data from flash */ CpuMemCopy((blt_addr)block->data, (blt_addr)FlashGetPhysAddr(address), FLASH_WRITE_BLOCK_SIZE); /* restore originally selected page */ FLASH_PPAGE_REG = oldPage; return BLT_TRUE; } /*** end of FlashInitBlock ***/ /************************************************************************************//** ** \brief Switches blocks by programming the current one and initializing the ** next. ** \param block Pointer to flash block info structure to operate on. ** \param base_addr Base address of the next block. ** \return The pointer of the block info struct that is no being used, or a NULL ** pointer in case of error. ** ****************************************************************************************/ static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr) { /* check if a switch needs to be made away from the boot block. in this case the boot * block shouldn't be written yet, because this is done at the end of the programming * session by FlashDone(), this is right after the checksum was written. */ if (block == &bootBlockInfo) { /* switch from the boot block to the generic block info structure */ block = &blockInfo; } /* check if a switch back into the bootblock is needed. in this case the generic block * doesn't need to be written here yet. */ else if (base_addr == flashLayout[FLASH_LAST_SECTOR_IDX].sector_start) { /* switch from the generic block to the boot block info structure */ block = &bootBlockInfo; base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start; } else { /* need to switch to a new block, so program the current one and init the next */ if (FlashWriteBlock(block) == BLT_FALSE) { return BLT_NULL; } } /* initialize tne new block when necessary */ if (FlashInitBlock(block, base_addr) == BLT_FALSE) { return BLT_NULL; } /* still here to all is okay */ return block; } /*** end of FlashSwitchBlock ***/ /************************************************************************************//** ** \brief Programming is done per block. This function adds data to the block ** that is currently collecting data to be written to flash. If the ** address is outside of the current block, the current block is written ** to flash an a new block is initialized. ** \param block Pointer to flash block info structure to operate on. ** \param address Flash destination address. ** \param data Pointer to the byte array with data. ** \param len Number of bytes to add to the block. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address, blt_int8u *data, blt_int32u len) { blt_addr current_base_addr; blt_int8u *dst; blt_int8u *src; /* determine the current base address */ current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { /* initialize the blockInfo struct for the current block */ if (FlashInitBlock(block, current_base_addr) == BLT_FALSE) { return BLT_FALSE; } } /* check if the new data fits in the current block */ if (block->base_addr != current_base_addr) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr); if (block == BLT_NULL) { return BLT_FALSE; } } /* add the data to the current block, but check for block overflow */ dst = &(block->data[address - block->base_addr]); src = data; do { /* keep the watchdog happy */ CopService(); /* buffer overflow? */ if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE) { /* need to switch to a new block, so program the current one and init the next */ block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE); if (block == BLT_NULL) { return BLT_FALSE; } /* reset destination pointer */ dst = &(block->data[0]); } /* write the data to the buffer */ *dst = *src; /* update pointers */ dst++; src++; /* decrement byte counter */ len--; } while (len > 0); /* still here so all is good */ return BLT_TRUE; } /*** end of FlashAddToBlock ***/ /************************************************************************************//** ** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data ** array. ** \param block Pointer to flash block info structure to operate on. ** \return BLT_TRUE if successful, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool FlashWriteBlock(tFlashBlockInfo *block) { blt_bool result = BLT_TRUE; blt_addr prog_addr; blt_int16u prog_data; blt_int16u word_cnt; /* make sure the blockInfo is not uninitialized */ if (block->base_addr == FLASH_INVALID_ADDRESS) { return BLT_FALSE; } /* program all words in the block one by one */ for (word_cnt=0; word_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(blt_int16u)); word_cnt++) { prog_addr = block->base_addr + (word_cnt * sizeof(blt_int16u)); prog_data = *(volatile blt_int16u *)(&block->data[word_cnt * sizeof(blt_int16u)]); /* keep the watchdog happy */ CopService(); /* program the word to flash */ if (FlashOperate(FLASH_PROGRAM_WORD_CMD, prog_addr, prog_data) == BLT_FALSE) { /* error occurred */ result = BLT_FALSE; break; } /* verify that the written data is actually there */ if (FlashGetLinearAddrByte(prog_addr) != (blt_int8u)(prog_data >> 8)) { /* msb not correctly written */ result = BLT_FALSE; break; } if (FlashGetLinearAddrByte(prog_addr+1) != (blt_int8u)(prog_data)) { /* lsb not correctly written */ result = BLT_FALSE; break; } } /* still here so all is okay */ return result; } /*** end of FlashWriteBlock ***/ /************************************************************************************//** ** \brief Reads the byte value from the linear address. ** \param addr Linear address. ** \return The byte value located at the linear address. ** ****************************************************************************************/ static blt_int8u FlashGetLinearAddrByte(blt_addr addr) { blt_int8u oldPage; blt_int8u result; /* backup originally selected page */ oldPage = FLASH_PPAGE_REG; /* select correct page */ FLASH_PPAGE_REG = FlashGetPhysPage(addr); /* read the byte value from the page address */ result = *((blt_int8u *)FlashGetPhysAddr(addr)); /* restore originally selected page */ FLASH_PPAGE_REG = oldPage; /* return the read byte value */ return result; } /*** end of FlashGetLinearAddrByte ***/ /************************************************************************************//** ** \brief Extracts the physical flash page number from a linear address. ** \param addr Linear address. ** \return The page number. ** ****************************************************************************************/ static blt_int8u FlashGetPhysPage(blt_addr addr) { return (blt_int8u)(addr / FLASH_PAGE_SIZE); } /*** end of FlashGetPhysPage ***/ /************************************************************************************//** ** \brief Extracts the physical address on the flash page number from a ** linear address. ** \param addr Linear address. ** \return The physical address. ** ****************************************************************************************/ static blt_int16u FlashGetPhysAddr(blt_addr addr) { return (blt_int16u)(((blt_int16u)addr % FLASH_PAGE_SIZE) + FLASH_PAGE_OFFSET); } /*** end of FlashGetPhysAddr ***/ /************************************************************************************//** ** \brief Executes the command. The actual code for the command execution is ** stored as location independant machine code in array flashExecCmd[]. ** The contents of this array are temporarily copied to RAM. This way the ** function can be executed from RAM avoiding problem when try to perform ** a flash operation on the same flash block that this driver is located. ** \return none. ** ****************************************************************************************/ static void FlashExecuteCommand(void) { /* pointer to command execution function */ pFlashExeCmdFct pExecCommandFct; blt_int8u cnt; /* copy code for command execution to ram buffer */ for (cnt=0; cnt<(sizeof(flashExecCmd)/sizeof(flashExecCmd[0])); cnt++) { flashExecCmdRam[cnt] = flashExecCmd[cnt]; } /* init the function pointer */ pExecCommandFct = (pFlashExeCmdFct)((void *)flashExecCmdRam); /* call the command execution function */ pExecCommandFct(); } /*** end of FlashExecuteCommand ***/ /************************************************************************************//** ** \brief Prepares the flash command and executes it. ** \param cmd Command to be launched. ** \param addr Physical address for operation. ** \param data Data to write to addr for operation. ** \return BLT_TRUE if operation was successful, otherwise BLT_FALSE. ** ****************************************************************************************/ static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u data) { blt_bool result; blt_int8u oldPage; blt_int8u selPage; /* set default result to error */ result = BLT_FALSE; /* backup originally selected page */ oldPage = FLASH_PPAGE_REG; /* calculate page number */ selPage = FlashGetPhysPage(addr); /* select correct page */ FLASH_PPAGE_REG = selPage; /* there are always a fixed number of pages per block. to get the block index number * we simply divide by this number of pages per block. to one tricky thing is that * the block number goes from high to low with increasing page numbers so we need to * invert it. After the inversion we apply a bitmask to obtain the block selection bits */ FLASH->fcnfg &= ~FLASH_BLOCK_SEL_MASK; FLASH->fcnfg |= (~(selPage / FLASH_PAGES_PER_BLOCK)) & FLASH_BLOCK_SEL_MASK; /* clear error flags */ FLASH->fstat = (ACCERR_BIT | PVIOL_BIT); /* command buffer empty? */ if ((FLASH->fstat & CBEIF_BIT) == CBEIF_BIT) { /* write data value to the physical address to operate on */ *((blt_int16u *)FlashGetPhysAddr(addr)) = data; /* write the command */ FLASH->fcmd = cmd; /* launch the actual command */ FlashExecuteCommand(); /* check error flags */ if ((FLASH->fstat & (ACCERR_BIT | PVIOL_BIT)) == 0) { /* operation was successful */ result = BLT_TRUE; } } /* restore originally selected page */ FLASH_PPAGE_REG = oldPage; return result; } /*** end of FlashOperate ***/ /*********************************** end of flash.c ************************************/