/************************************************************************************//** * \file Source/HCS12/mbrtu.c * \brief Bootloader Modbus RTU communication interface source file. * \ingroup Target_HCS12 * \internal *---------------------------------------------------------------------------------------- * C O P Y R I G H T *---------------------------------------------------------------------------------------- * Copyright (c) 2023 by Feaser http://www.feaser.com All rights reserved * *---------------------------------------------------------------------------------------- * L I C E N S E *---------------------------------------------------------------------------------------- * This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or * modify it under the terms of the GNU General Public License as published by the Free * Software Foundation, either version 3 of the License, or (at your option) any later * version. * * OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You have received a copy of the GNU General Public License along with OpenBLT. It * should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy. * * \endinternal ****************************************************************************************/ /**************************************************************************************** * Include files ****************************************************************************************/ #include "boot.h" /* bootloader generic header */ #if (BOOT_COM_MBRTU_ENABLE > 0) /**************************************************************************************** * Type definitions ****************************************************************************************/ /** \brief Structure type with the layout of the UART related control registers. */ typedef volatile struct { volatile blt_int8u scibdh; /**< baudrate control register [SBR 12..8] */ volatile blt_int8u scibdl; /**< baudrate control register [SBR 8..0] */ volatile blt_int8u scicr1; /**< control register 1 */ volatile blt_int8u scicr2; /**< control register 2 */ volatile blt_int8u scisr1; /**< status regsiter 1 */ volatile blt_int8u scisr2; /**< status register 2 */ volatile blt_int8u scidrh; /**< data register high (for ninth bit) */ volatile blt_int8u scidrl; /**< data regsiter low */ } tUartRegs; /**< sci related registers */ /** \brief Structure type with the layout of the timer related control registers. */ typedef struct { volatile blt_int8u unused1; /**< input capture/output compare select */ volatile blt_int8u unused2; /**< compare force register */ volatile blt_int8u unused3; /**< output compare 7 mask register */ volatile blt_int8u unused4; /**< output compare 7 data register */ volatile blt_int16u tcnt; /**< timer counter register */ } tTimerRegs; /**< timer related registers */ /**************************************************************************************** * Macro definitions ****************************************************************************************/ /** \brief Timeout for transmitting a byte in milliseconds. */ #define MBRTU_BYTE_TX_TIMEOUT_MS (10u) #if (BOOT_COM_MBRTU_CHANNEL_INDEX == 0) /** \brief Set UART base address to SCI0. */ #define UART_REGS_BASE_ADDRESS (0x00c8) #elif (BOOT_COM_MBRTU_CHANNEL_INDEX == 1) /** \brief Set UART base address to SCI1. */ #define UART_REGS_BASE_ADDRESS (0x00d0) #endif /** \brief Macro for accessing the UART related control registers. */ #define UART ((volatile tUartRegs *)UART_REGS_BASE_ADDRESS) /** \brief Base address for the timer related control registers. */ #define TIMER_REGS_BASE_ADDRESS (0x0040) /** \brief Macro for accessing the flash related control registers. */ #define TIMER ((volatile tTimerRegs *)TIMER_REGS_BASE_ADDRESS) /**************************************************************************************** * Register definitions ****************************************************************************************/ /** \brief SCICR1 - parity type bit. */ #define PT_BIT (0x01) /** \brief SCICR1 - parity enable bit. */ #define PE_BIT (0x02) /** \brief SCICR1 - data format mode bit. */ #define M_BIT (0x10) /** \brief SCICR2 - transmitter enable bit. */ #define TE_BIT (0x08) /** \brief SCICR2 - receiver enable bit. */ #define RE_BIT (0x04) /** \brief SCISR1 - parity error bit. */ #define PF_BIT (0x01) /** \brief SCISR1 - framing error bit. */ #define FE_BIT (0x02) /** \brief SCISR1 - receiver data register full bit. */ #define RDRF_BIT (0x20) /** \brief SCISR1 - transmit complete bit. */ #define TC_BIT (0x40) /** \brief SCISR1 - transmit data register empty bit. */ #define TDRE_BIT (0x80) /**************************************************************************************** * Local data declarations ****************************************************************************************/ /** \brief Stores the number of free running counter ticks that represents the 3.5 * character delay time (T3_5) for Modbus RTU. */ static blt_int16u mbRtuT3_5Ticks; /**************************************************************************************** * Function prototypes ****************************************************************************************/ static blt_bool MbRtuReceiveByte(blt_int8u *data); static void MbRtuTransmitByte(blt_int8u data, blt_bool end_of_packet); /************************************************************************************//** ** \brief Initializes the Modbus RTU communication interface. ** \attention It is the application's responsibility to initialize a timer peripheral ** to have an upwards counting free running counter, which runs at 100 kHz. ** \return none. ** ****************************************************************************************/ void MbRtuInit(void) { blt_int16u baudrate_sbr0_12; blt_int16u startTimeTicks; blt_int16u deltaTimeTicks; blt_int16u currentTimeTicks; blt_int8u rxDummy; /* the current implementation supports SCI0 and SCI1. throw an assertion error in * case a different UART channel is configured. */ ASSERT_CT((BOOT_COM_RS232_CHANNEL_INDEX == 0) || (BOOT_COM_RS232_CHANNEL_INDEX == 1)); /* the SCI subsystem only supports 1 stopbit. */ ASSERT_CT(BOOT_COM_MBRTU_STOPBITS == 1); /* calculate the 3.5 character delay time in free running counter ticks. note that * the free running counter runs at 100 kHz, so one tick is 10 us. For baudrates > * 19200 bps, it can be fixed to 1750 us. */ if (BOOT_COM_MBRTU_BAUDRATE > 19200) { /* set T3_5 time to a fixed value of 1750 us. */ mbRtuT3_5Ticks = 175; } /* calculate the T3_5 time, because the baudrate is <= 19200 bps. */ else { /* T3_5 [us * 10] = 3.5 * Tchar = 3.5 * 11 * 100000 / baudrate = 3850000 / baudrate. * make sure to do integer round up though. Make sure to add 1 to adjust for 10us * timer resolution inaccuracy. */ mbRtuT3_5Ticks = (blt_int16u)(((3850000UL + (BOOT_COM_MBRTU_BAUDRATE - 1U)) / BOOT_COM_MBRTU_BAUDRATE) + 1); } /* reset the SCI subsystem's configuration, which automatically configures it for * 8,n,1 communication mode. */ UART->scicr2 = 0; UART->scicr1 = 0; UART->scibdh = 0; UART->scibdl = 0; /* configure the baudrate from BOOT_COM_MBRTU_BAUDRATE */ baudrate_sbr0_12 = (BOOT_CPU_SYSTEM_SPEED_KHZ * 1000ul) / 16 / BOOT_COM_MBRTU_BAUDRATE; /* baudrate register value cannot be more than 13 bits */ ASSERT_RT((baudrate_sbr0_12 & 0xe000) == 0); /* write first MSB then LSB for the baudrate to latch */ UART->scibdh = (blt_int8u)(baudrate_sbr0_12 >> 8); UART->scibdl = (blt_int8u)baudrate_sbr0_12; /* odd parity enabled? */ #if (BOOT_COM_MBRTU_PARITY == 1) UART->scicr1 |= M_BIT | PE_BIT | PT_BIT; #endif /* even parity enabled? */ #if (BOOT_COM_MBRTU_PARITY == 2) UART->scicr1 |= M_BIT | PE_BIT; #endif /* enable the transmitted and receiver */ UART->scicr2 |= (TE_BIT | RE_BIT); /* enable the receiver output to be able to receive. */ MbRtuDriverOutputControlHook(BLT_FALSE); /* wait for idle line detection. This is T3_5 time after reception of the last byte. */ startTimeTicks = MbRtuFreeRunningCounterGet(); do { /* service the watchdog. */ CopService(); /* get the current value of the free running counter. */ currentTimeTicks = MbRtuFreeRunningCounterGet(); /* check if a byte was received while waiting for the idle line. */ if (MbRtuReceiveByte(&rxDummy) == BLT_TRUE) { /* restart the idle line detection. */ startTimeTicks = currentTimeTicks; } /* calculate the number of ticks that elapsed since the start or since the last * byte reception. Note that this calculation works, even if the free running counter * overflowed. */ deltaTimeTicks = currentTimeTicks - startTimeTicks; } while (deltaTimeTicks < mbRtuT3_5Ticks); } /*** end of MbRtuInit ***/ /************************************************************************************//** ** \brief Transmits a packet formatted for the communication interface. ** \param data Pointer to byte array with data that it to be transmitted. ** \param len Number of bytes that are to be transmitted. ** \return none. ** ****************************************************************************************/ void MbRtuTransmitPacket(blt_int8u *data, blt_int8u len) { blt_int16u data_index; blt_int16u checksum; blt_bool endOfPacket = BLT_FALSE; /* Made static to lower stack load and +5 for Modbus RTU packet overhead. */ static blt_int8u txPacket[BOOT_COM_MBRTU_TX_MAX_DATA + 5]; /* On Modbus RTU, there must always be a T3_5 time separation between packet trans- * missions. * * This bootloader uses XCP packets embedded in Modbus RTU packets. The XCP * communication is always request / response based. That means that this packet is * a response packet and it will only be sent, after the reception of a request packet. * * A response packet is only deemed valid, after the T3_5 idle time. This module * implements the T3_5 end-of-packet time event detection. Consequently, it is already * guaranteed that there is T3_5 between subsequent packet transmissions. As such, no * further T3_5 wait time is needed here. */ /* verify validity of the len-parameter */ ASSERT_RT(len <= BOOT_COM_MBRTU_TX_MAX_DATA); /* construct the Modbus RTU packet. start by adding the slave address. */ txPacket[0] = BOOT_COM_MBRTU_NODE_ID; /* add the user-defined function code for embedding XCP packets. */ txPacket[1] = BOOT_COM_MBRTU_FCT_CODE_USER_XCP; /* add the XCP packet length. */ txPacket[2] = len; /* copy the XCP packet data. */ CpuMemCopy((blt_int32u)&txPacket[3], (blt_int32u)data, len); /* calculate the checksum for the packet, including slave address, function code and * extra XCP length. */ checksum = MbRtuCrcCalculate(&txPacket[0], len + 3); /* add the checksum at the end of the packet */ txPacket[len + 3] = (blt_int8u)(checksum & 0xff); txPacket[len + 4] = (blt_int8u)(checksum >> 8); /* enable the driver output to be able to send. just make sure to wait a little around * the togglng of the DE/NRE pin. */ MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_ENABLE_DELAY_US); MbRtuDriverOutputControlHook(BLT_TRUE); MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_ENABLE_DELAY_US); /* transmit all the packet bytes one-by-one */ for (data_index = 0; data_index < (len + 5); data_index++) { /* keep the watchdog happy */ CopService(); /* last byte of the packet? */ if (data_index == ((len + 5) - 1)) { /* update the end of packet flag. */ endOfPacket = BLT_TRUE; } /* write byte */ MbRtuTransmitByte(txPacket[data_index], endOfPacket); } /* enable the receiver output to be able to receive again. just make sure to wait a * little around the togglng of the DE/NRE pin. */ MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_DISABLE_DELAY_US); MbRtuDriverOutputControlHook(BLT_FALSE); MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_DISABLE_DELAY_US); } /*** end of MbRtuTransmitPacket ***/ /************************************************************************************//** ** \brief Receives a communication interface packet if one is present. ** \param data Pointer to byte array where the data is to be stored. ** \param len Pointer where the length of the packet is to be stored. ** \return BLT_TRUE if a packet was received, BLT_FALSE otherwise. ** ****************************************************************************************/ blt_bool MbRtuReceivePacket(blt_int8u *data, blt_int8u *len) { blt_bool result = BLT_FALSE; blt_int8u rxByte; blt_int16u currentTimeTicks; blt_int16u deltaTimeTicks; blt_int16u checksumCalculated; blt_int16u checksumReceived; /* Made static to lower stack load and +5 for Modbus RTU packet overhead. */ static blt_int8u rxPacket[BOOT_COM_MBRTU_RX_MAX_DATA + 5]; static blt_int8u rxLength = 0; static blt_bool packetRxInProgress = BLT_FALSE; static blt_int16u lastRxByteTimeTicks = 0; /* get the current value of the free running counter. */ currentTimeTicks = MbRtuFreeRunningCounterGet(); /* check for a newly received byte. */ if (MbRtuReceiveByte(&rxByte) == BLT_TRUE) { /* store the time at which the byte was received. */ lastRxByteTimeTicks = currentTimeTicks; /* is this the potential start of a new packet? */ if (packetRxInProgress == BLT_FALSE) { /* initialize the reception of a new packet. */ rxLength = 0; packetRxInProgress = BLT_TRUE; } /* store the newly received byte in the buffer, with buffer overrun protection. */ if (rxLength < (sizeof(rxPacket)/sizeof(rxPacket[0]))) { rxPacket[rxLength] = rxByte; rxLength++; } /* buffer overrun occurred. received packet was longer than supported so discard * the packet to try and sync to the next one. */ else { /* discard the partially received packet. */ packetRxInProgress = BLT_FALSE; } } /* only attempt to detect the end of packet, when a reception is in progress. */ if (packetRxInProgress == BLT_TRUE) { /* calculate the number of ticks that elapsed since the last byte reception. note * that this calculation works, even if the free running counter overflowed. */ deltaTimeTicks = currentTimeTicks - lastRxByteTimeTicks; /* packet reception is assumed complete after T3_5 of not receiving new data. */ if (deltaTimeTicks >= mbRtuT3_5Ticks) { /* a Modbus RTU packet consists of at least the address field, function code and * 16-bit CRC. Validate the packet length based on this info. */ if (rxLength >= 4) { /* calculate the packet checksum. */ checksumCalculated = MbRtuCrcCalculate(&rxPacket[0], rxLength - 2); /* extract the checksum received with the packet. */ checksumReceived = rxPacket[rxLength - 2] | (rxPacket[rxLength - 1] << 8); /* only continue with packet processing if the checksums match. */ if (checksumCalculated == checksumReceived) { /* we are only interested in Modbus RTU packets that are addressed to us and * have an XCP packet embedded. */ if ( (rxPacket[0] == BOOT_COM_MBRTU_NODE_ID) && (rxPacket[1] == BOOT_COM_MBRTU_FCT_CODE_USER_XCP) ) { /* An XCP packet embedded in a Modbus RTU packet has an extra XCP packet * length value. Use it to double-check that the packet length is valid. */ if (rxPacket[2] == (rxLength - 5)) { /* copy the packet's XCP data. */ CpuMemCopy((blt_int32u)data, (blt_int32u)&rxPacket[3], rxLength - 5); /* set the packet's XCP length. */ *len = rxLength - 5; /* update the result to success to indicate that this XCP packet is ready * for processing. */ result = BLT_TRUE; } } } } /* reset the packet reception in progress flag, to be able to receive the next. */ packetRxInProgress = BLT_FALSE; } } /* give the result back to the caller. */ return result; } /*** end of MbRtuReceivePacket ***/ /************************************************************************************//** ** \brief Receives a communication interface byte if one is present. ** \param data Pointer to byte where the data is to be stored. ** \return BLT_TRUE if a byte was received, BLT_FALSE otherwise. ** ****************************************************************************************/ static blt_bool MbRtuReceiveByte(blt_int8u *data) { blt_bool result = BLT_FALSE; blt_int8u rxFlags; /* read the reception related status bits. this is also the first step in clearing the * error flags. */ rxFlags = UART->scisr1 & (RDRF_BIT | FE_BIT | PF_BIT); /* check if a new byte was received by means of the RDRF-bit */ if ((rxFlags & RDRF_BIT) != 0) { /* update the result */ result = BLT_TRUE; /* check for a frame error. the frame error check is important because it can detect * a missing stopbit. on an RS485 bus without bias resistors, the A-B differential * voltage is 0. for an RS485 transceiver this is neither a 0 nor a 1 bit, so * undefined. most RS485 transceivers feature a reception failsafe function to drive * the Rx output (going to the UART Rx) to a defined state of logic 1. in case the * used RS485 transceiver doesn't have such a feature, it typically leaves the Rx * output in a logic 0 state. this means that after the stop bit of the last packet * byte, the UART Rx input sees a logic 0, and assumes it is a start bit. the * remaining data bits will always be 0 and, most importantly no stop bit is * present, causing a framing error. Long story short: if you don't check for the * framing error flag, you might receive an extra byte with value 0, which is not * actually transmitted on the RS485 bus. you can catch and ignore this byte by doing * a frame error check. */ if ((rxFlags & FE_BIT) != 0) { /* ignore the byte because of a detected frame error. Note that the frame error * flag auto-resets after reading the UART data register, which is done later on in * this function. */ result = BLT_FALSE; } #if (BOOT_COM_MBRTU_PARITY > 0) /* check for a parity error. */ if ((rxFlags & PF_BIT) != 0) { /* ignore the byte because of a detected parity error. Note that the parity error * flag auto-resets after reading the UART data register, which is done later on in * this function. */ result = BLT_FALSE; } #endif /* store the received byte. note that this is also the second and last step in * clearing the error flags. */ data[0] = UART->scidrl; } /* give the result back to the caller. */ return result; } /*** end of MbRtuReceiveByte ***/ /************************************************************************************//** ** \brief Transmits a communication interface byte. ** \param data Value of byte that is to be transmitted. ** \param end_of_packet BLT_TRUE if this is the last byte of the packet, BLT_FALSE ** otherwise. ** \return none. ** ****************************************************************************************/ static void MbRtuTransmitByte(blt_int8u data, blt_bool end_of_packet) { blt_int32u timeout; /* write byte to transmit holding register. */ UART->scidrl = data; /* set timeout time to wait for transmit completion. */ timeout = TimerGet() + MBRTU_BYTE_TX_TIMEOUT_MS; /* not the last byte of the packet? */ if (end_of_packet == BLT_FALSE) { /* wait for tx holding register to be empty */ while ((UART->scisr1 & TDRE_BIT) == 0) { /* keep the watchdog happy. */ CopService(); /* break loop upon timeout. this would indicate a hardware failure. */ if (TimerGet() > timeout) { break; } } } /* this is the last byte of a packet. */ else { /* wait for tx complete flag to be set. this is needed for the last byte, otherwise * the transceiver's transmit output gets disabled with * MbRtuDriverOutputControlHook() before the byte reception completes. */ while ((UART->scisr1 & TC_BIT) == 0) { /* keep the watchdog happy. */ CopService(); /* break loop upon timeout. this would indicate a hardware failure. */ if (TimerGet() > timeout) { break; } } } } /*** end of MbRtuTransmitByte ***/ /************************************************************************************//** ** \brief Obtains the counter value of the 100 kHz free running counter. Note that ** each count represent 10 us. The Modbus RTU communication module uses this ** free running counter for Modbus RTU packet timing related purposes. The ** already available 1 ms timer does not have the needed resolution for this ** purpose. ** \details This functionality reuses the timer's free running counter, which the ** timer module already initialized to count at BOOT_CPU_SYSTEM_SPEED_KHZ/4. ** \return Current value of the free running counter. ** ****************************************************************************************/ blt_int16u MbRtuFreeRunningCounterGet(void) { static blt_bool initialized = BLT_FALSE; static blt_int16u counts_per_ten_us = 0; static blt_int16u free_running_counter_last = 0; static blt_int16u ten_us_tick_counter = 0; blt_int16u free_running_counter_now; blt_int16u delta_counts; blt_int16u ten_us_ticks; /* perform one-time initialization.*/ if (initialized == BLT_FALSE) { /* set the flag to make sure that this part only runs once. */ initialized = BLT_TRUE; /* calculate how many counts of the timer's free running counter equals 10us, * because one count of a 100 kHz counter equals that. */ counts_per_ten_us = BOOT_CPU_SYSTEM_SPEED_KHZ / 4 / 100; /* initialize current value of the timer's free running counter. */ free_running_counter_last = TIMER->tcnt; } /* get the current value of the free running counter. */ free_running_counter_now = TIMER->tcnt; /* calculate the number of counts that passed since the detection of the last * ten microseconds event. Note that this calculation also works, in case the free * running counter overflowed, thanks to integer math. */ delta_counts = free_running_counter_now - free_running_counter_last; /* did one or more ten microsecond counts pass since the last event? */ if (delta_counts >= counts_per_ten_us) { /* calculate how many ten microsecond counts passed. */ ten_us_ticks = delta_counts / counts_per_ten_us; /* update the counter. */ ten_us_tick_counter += ten_us_ticks; /* store the counter value of the last event to detect the next one. */ free_running_counter_last += (ten_us_ticks * counts_per_ten_us); } /* return the current value of the 100 kHz free running counter to the caller. */ return ten_us_tick_counter; } /*** end of MbRtuFreeRunningCounterGet ***/ #endif /* BOOT_COM_MBRTU_ENABLE > 0 */ /*********************************** end of mbrtu.c ************************************/