openblt/Target/Source/HCS12/flash.c

1095 lines
46 KiB
C

/************************************************************************************//**
* \file Source/HCS12/flash.c
* \brief Bootloader flash driver source file.
* \ingroup Target_HCS12
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Value for an invalid flash sector. */
#define FLASH_INVALID_SECTOR_IDX (0xff)
/** \brief Value for an invalid flash address. */
#define FLASH_INVALID_ADDRESS (0xffffffff)
/** \brief Standard size of a flash block for writing. */
#define FLASH_WRITE_BLOCK_SIZE (512)
/** \brief Total numbers of sectors in array flashLayout[]. */
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0]))
#define FLASH_LAST_SECTOR_IDX (FLASH_TOTAL_SECTORS-1)
#define FLASH_ERASE_BLOCK_SIZE (512)
/** \brief Offset into the user program's vector table where the checksum is located.
* Note that the value can be overriden in blt_conf.h, because the size of the
* vector table could vary. When changing this value, don't forget to update the
* location of the checksum in the user program accordingly. Otherwise the
* checksum verification will always fail.
*/
#ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET
#define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x82)
#endif
/** \brief Total size of the vector table, excluding the bootloader specific checksum. */
#define FLASH_VECTOR_TABLE_SIZE (0x80)
/** \brief Start address of the bootloader programmable flash. */
#define FLASH_START_ADDRESS (flashLayout[0].sector_start)
/** \brief End address of the bootloader programmable flash. */
#define FLASH_END_ADDRESS (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - 1)
/** \brief Size of a flash page on the HCS12. */
#define FLASH_PAGE_SIZE (0x4000) /* flash page size in bytes */
/** \brief Physical start address of the HCS12 page window. */
#define FLASH_PAGE_OFFSET (0x8000) /* physical start addr. of pages */
/** \brief PPAGE register to select a specific flash page. */
#define FLASH_PPAGE_REG (*(volatile blt_int8u *)(0x0030))
/** \brief Base address of the flash related control registers. */
#define FLASH_REGS_BASE_ADDRESS (0x0100)
/** \brief Macro for accessing the flash related control registers. */
#define FLASH ((volatile tFlashRegs *)FLASH_REGS_BASE_ADDRESS)
/** \brief Program word flash command. */
#define FLASH_PROGRAM_WORD_CMD (0x20)
/** \brief Erase sector flash command. */
#define FLASH_ERASE_SECTOR_CMD (0x40)
#if (BOOT_NVM_SIZE_KB > 256)
/** \brief Number of flash pages in a block. */
#define FLASH_PAGES_PER_BLOCK (8)
#else
/** \brief Number of flash pages in a block. */
#define FLASH_PAGES_PER_BLOCK (4)
#endif
/** \brief Bitmask for selecting a block with flash pages. */
#define FLASH_BLOCK_SEL_MASK (0x03)
/****************************************************************************************
* Register definitions
****************************************************************************************/
/** \brief FCLKDIV - enable prescaler by 8 bit. */
#define PRDIV8_BIT (0x40)
/** \brief FSTAT - flash access error bit. */
#define ACCERR_BIT (0x10)
/** \brief FSTAT - protection violation bit. */
#define PVIOL_BIT (0x20)
/** \brief FSTAT - command buffer empty flag bit. */
#define CBEIF_BIT (0x80)
/** \brief FCNFG - command buf. empty irq enable bit. */
#define CBEIE_BIT (0x80)
/** \brief FCNFG - command complete irg enable bit. */
#define CCIE_BIT (0x40)
/** \brief FCNFG - enable security key writing bit. */
#define KEYACC_BIT (0x20)
/****************************************************************************************
* Plausibility checks
****************************************************************************************/
#if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE)
#error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block."
#endif
#ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE
#define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u)
#endif
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type for the flash sectors in the flash layout table. */
typedef struct
{
blt_addr sector_start; /**< sector start address */
blt_int32u sector_size; /**< sector size in bytes */
} tFlashSector;
/** \brief Structure type for grouping flash block information.
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
* flash block manager is implemented in this driver. this flash block manager
* depends on this flash block info structure. It holds the base address of
* the flash block and the data that should be programmed into the flash
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
*/
typedef struct
{
blt_addr base_addr;
blt_int8u data[FLASH_WRITE_BLOCK_SIZE];
} tFlashBlockInfo;
/** \brief Structure type for the flash control registers. */
typedef volatile struct
{
volatile blt_int8u fclkdiv; /**< flash clock devider register */
volatile blt_int8u fsec; /**< flash security register */
volatile blt_int8u ftstmod; /**< flash test mode register */
volatile blt_int8u fcnfg; /**< flash configuration register */
volatile blt_int8u fprot; /**< flash protection register */
volatile blt_int8u fstat; /**< flash status register */
volatile blt_int8u fcmd; /**< flash command register */
} tFlashRegs;
/** \brief Pointer type to flash command execution function. */
typedef void (*pFlashExeCmdFct)(void);
/****************************************************************************************
* Hook functions
****************************************************************************************/
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
extern blt_bool FlashCryptoDecryptDataHook(blt_addr address, blt_int8u * data,
blt_int32u size);
#endif
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len);
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
static blt_int8u FlashGetLinearAddrByte(blt_addr addr);
static blt_int8u FlashGetPhysPage(blt_addr addr);
static blt_int16u FlashGetPhysAddr(blt_addr addr);
static void FlashExecuteCommand(void);
static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u data);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0
* in blt_conf.h and then implement your own version of the flashLayout[] table
* in a source-file with the name flash_layout.c. This way you customize the
* flash memory size reserved for the bootloader, without having to modify
* the flashLayout[] table in this file directly. This file will then include
* flash_layout.c so there is no need to compile it additionally with your
* project.
*/
#if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0)
/** \brief Array wit the layout of the flash memory.
* \details Also controls what part of the flash memory is reserved for the bootloader.
* If the bootloader size changes, the reserved sectors for the bootloader
* might need adjustment to make sure the bootloader doesn't get overwritten.
* This layout uses linear addresses only. For example, the first address on
* page 0x3F is: 0x3F * 0x4000 (page size) = 0xFC000. Note that page 0x3F is
* where the bootloader also resides and it has been entered as 8 chunks of 2kb.
* This allows flexibility for reserving more/less space for the bootloader in
* case its size changes in the future.
*/
static const tFlashSector flashLayout[] =
{
#if (BOOT_NVM_SIZE_KB > 512)
#error "BOOT_NVM_SIZE_KB > 512 is currently not supported."
#endif
#if (BOOT_NVM_SIZE_KB >= 512)
{ 0x80000, 0x4000 }, /* flash page 0x20 - 16kb */
{ 0x84000, 0x4000 }, /* flash page 0x21 - 16kb */
{ 0x88000, 0x4000 }, /* flash page 0x22 - 16kb */
{ 0x8C000, 0x4000 }, /* flash page 0x23 - 16kb */
{ 0x90000, 0x4000 }, /* flash page 0x24 - 16kb */
{ 0x94000, 0x4000 }, /* flash page 0x25 - 16kb */
{ 0x98000, 0x4000 }, /* flash page 0x26 - 16kb */
{ 0x9C000, 0x4000 }, /* flash page 0x27 - 16kb */
{ 0xA0000, 0x4000 }, /* flash page 0x28 - 16kb */
{ 0xA4000, 0x4000 }, /* flash page 0x29 - 16kb */
{ 0xA8000, 0x4000 }, /* flash page 0x2A - 16kb */
{ 0xAC000, 0x4000 }, /* flash page 0x2B - 16kb */
{ 0xB0000, 0x4000 }, /* flash page 0x2C - 16kb */
{ 0xB4000, 0x4000 }, /* flash page 0x2D - 16kb */
{ 0xB8000, 0x4000 }, /* flash page 0x2E - 16kb */
{ 0xBC000, 0x4000 }, /* flash page 0x2F - 16kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 256)
{ 0xC0000, 0x4000 }, /* flash page 0x30 - 16kb */
{ 0xC4000, 0x4000 }, /* flash page 0x31 - 16kb */
{ 0xC8000, 0x4000 }, /* flash page 0x32 - 16kb */
{ 0xCC000, 0x4000 }, /* flash page 0x33 - 16kb */
{ 0xD0000, 0x4000 }, /* flash page 0x34 - 16kb */
{ 0xD4000, 0x4000 }, /* flash page 0x35 - 16kb */
{ 0xD8000, 0x4000 }, /* flash page 0x36 - 16kb */
{ 0xDC000, 0x4000 }, /* flash page 0x37 - 16kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 128)
{ 0xE0000, 0x4000 }, /* flash page 0x38 - 16kb */
{ 0xE4000, 0x4000 }, /* flash page 0x39 - 16kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 96)
{ 0xE8000, 0x4000 }, /* flash page 0x3A - 16kb */
{ 0xEC000, 0x4000 }, /* flash page 0x3B - 16kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 64)
{ 0xF0000, 0x4000 }, /* flash page 0x3C - 16kb */
{ 0xF4000, 0x4000 }, /* flash page 0x3D - 16kb */
#endif
{ 0xF8000, 0x4000 }, /* flash page 0x3E - 16kb */
{ 0xFC000, 0x0800 }, /* flash page 0x3F - 2kb */
{ 0xFC800, 0x0800 }, /* flash page 0x3F - 2kb */
{ 0xFD000, 0x0800 }, /* flash page 0x3F - 2kb */
{ 0xFD800, 0x0800 }, /* flash page 0x3F - 2kb */
{ 0xFE000, 0x0800 }, /* flash page 0x3F - 2kb */
/* { 0xFE800, 0x0800 }, flash page 0x3F - reserved for bootloader */
/* { 0xFF000, 0x0800 }, flash page 0x3F - reserved for bootloader */
/* { 0xFF800, 0x0800 }, flash page 0x3F - reserved for bootloader */
};
#else
#include "flash_layout.c"
#endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */
/** \brief Array with executable code for performing flash operations.
* \details This array contains the machine code to perform the actual command on the
* flash device, such as program or erase. the code is compiler and location
* independent. This allows us to copy it to a ram buffer and execute the code
* from ram. This way the flash driver can be located in flash memory without
* running into problems when erasing/programming the same flash block that
* contains the flash driver. the source code for the machine code is as
* follows:
* // launch the command
* FLASH->fstat = CBEIF_BIT;
* // wait at least 4 cycles (per AN2720)
* asm("nop");
* asm("nop");
* asm("nop");
* asm("nop");
* // wait for command to complete
* while ((FLASH->fstat & CCIF_BIT) != CCIF_BIT);
*/
static const blt_int8u flashExecCmd[] =
{
/* asm("psha"); backup A */
0x36,
/* asm("pshx"); backup X */
0x34,
/* asm("ldx #0x100"); load flash register base in X */
0xce, 0x01, 0x00,
/* asm("leax 5,x"); point X to FSTAT register */
0x1a, 0x05,
/* asm("ldaa #0x80"); load CBEIF mask in A */
0x86, 0x80,
/* asm("staa 0,x"); set CBEIF bit in FSTAT to launch the command */
0x6a, 0x00,
/* asm("nop"); [4 times] wait at least 4 cycles */
0xa7,0xa7, 0xa7, 0xa7,
/* asm("brclr 0,x,#0x40,*"); wait for command completion: CCIF in FSTAT equals 1 */
0x0f, 0x00, 0x40, 0xfc,
/* asm("pulx"); restore X */
0x30,
/* asm("pula"); restore A */
0x32,
/* asm("rts"); return */
0x3d
};
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Local variable with information about the flash block that is currently
* being operated on.
* \details The smallest amount of flash that can be programmed is
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
* and stores info in this variable. Whenever new data should be flashed, it
* is first added to a RAM buffer, which is part of this variable. Whenever
* the RAM buffer, which has the size of a flash block, is full or data needs
* to be written to a different block, the contents of the RAM buffer are
* programmed to flash. The flash block manager requires some software
* overhead, yet results is faster flash programming because data is first
* harvested, ideally until there is enough to program an entire flash block,
* before the flash device is actually operated on.
*/
static tFlashBlockInfo blockInfo;
/** \brief Local variable with information about the flash boot block.
* \details The first block of the user program holds the vector table, which on the
* STM32 is also the where the checksum is written to. Is it likely that
* the vector table is first flashed and then, at the end of the programming
* sequence, the checksum. This means that this flash block need to be written
* to twice. Normally this is not a problem with flash memory, as long as you
* write the same values to those bytes that are not supposed to be changed
* and the locations where you do write to are still in the erased 0xFF state.
* Unfortunately, writing twice to flash this way, does not work reliably on
* all micros. This is why we need to have an extra block, the bootblock,
* placed under the management of the block manager. This way is it possible
* to implement functionality so that the bootblock is only written to once
* at the end of the programming sequence.
*/
static tFlashBlockInfo bootBlockInfo;
/** \brief RAM buffer where the executable flash operation code is copied to. */
static blt_int8u flashExecCmdRam[(sizeof(flashExecCmd)/sizeof(flashExecCmd[0]))];
/** \brief Maximum number of supported blocks, which is determined dynamically to have
* code that is independent of the used HCS12 derivative.
*/
static blt_int8u flashMaxNrBlocks;
/************************************************************************************//**
** \brief Initializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashInit(void)
{
blt_bool result = BLT_FALSE;
blt_int8u cnt;
blt_int8u prescaler = 1;
blt_int16u clockFreq;
/* flash EEPROM programming requires a minimal system speed of 1 MHz */
ASSERT_CT(BOOT_CPU_SYSTEM_SPEED_KHZ >= 1000);
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
/* determine how many flash blocks this device supports by first trying to set all
* all block selection bits. on devices where a specific block is not supported,
* the bit is reserved and will read back 0 afterwards
*/
FLASH->fcnfg |= FLASH_BLOCK_SEL_MASK;
/* read back which ones got set */
flashMaxNrBlocks = (FLASH->fcnfg & FLASH_BLOCK_SEL_MASK) + 1;
/* set back to default reset value */
FLASH->fcnfg &= ~(CBEIE_BIT | CCIE_BIT | KEYACC_BIT | FLASH_BLOCK_SEL_MASK);
/* enable extra prescale factor of 8 when the external crystal is > 12.8 MHz */
if (BOOT_CPU_XTAL_SPEED_KHZ > 12800)
{
prescaler = 8;
}
/* FDIV[5..0] can only be between 0 and 63 so do a linear search to find the correct
* setting.
*/
for (cnt = 0; cnt <= 63; cnt++)
{
/* calculate current clock: FCLK = Fexternal_clock / (1 + FDIV[5..0]) */
clockFreq = BOOT_CPU_XTAL_SPEED_KHZ / (prescaler * (1 + cnt));
/* is this a valid setting? */
if ((clockFreq > 150) && (clockFreq < 200))
{
/* configure the setting while taking into account the prescaler */
if (prescaler == 8)
{
FLASH->fclkdiv = (PRDIV8_BIT | cnt);
}
else
{
FLASH->fclkdiv = cnt;
}
/* all done */
result = BLT_TRUE;
break;
}
}
/* make sure that a valid clock divider was found */
ASSERT_RT(result == BLT_TRUE);
} /*** end of FlashInit ***/
/************************************************************************************//**
** \brief Reinitializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashReinit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashReinit ***/
/************************************************************************************//**
** \brief Writes the data to flash through a flash block manager. Note that this
** function also checks that no data is programmed outside the flash
** memory region, so the bootloader can never be overwritten.
** \param addr Start address.
** \param len Length in bytes.
** \param data Pointer to the data buffer.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data)
{
blt_addr base_addr;
blt_addr last_block_base_addr;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* make sure the addresses are within the flash device */
if ((addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS))
{
return BLT_FALSE;
}
/* determine the start address of the last block in flash */
last_block_base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_WRITE_BLOCK_SIZE;
/* if this is the bootblock, then let the boot block manager handle it */
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
if (base_addr == last_block_base_addr)
{
/* let the boot block manager handle it */
return FlashAddToBlock(&bootBlockInfo, addr, data, len);
}
/* let the block manager handle it */
return FlashAddToBlock(&blockInfo, addr, data, len);
} /*** end of FlashWrite ***/
/************************************************************************************//**
** \brief Erases the flash memory. Note that this function also checks that no
** data is erased outside the flash memory region, so the bootloader can
** never be erased.
** \param addr Start address.
** \param len Length in bytes.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashErase(blt_addr addr, blt_int32u len)
{
blt_addr erase_base_addr;
blt_int16u nr_of_erase_blocks;
blt_int32u total_erase_len;
blt_int16u block_cnt;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
return BLT_FALSE;
}
/* determine the base address for the erase operation, by aligning to
* FLASH_ERASE_BLOCK_SIZE.
*/
erase_base_addr = (addr/FLASH_ERASE_BLOCK_SIZE)*FLASH_ERASE_BLOCK_SIZE;
/* make sure the addresses are within the flash device */
if ((erase_base_addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS))
{
return BLT_FALSE;
}
/* determine number of bytes to erase from base address */
total_erase_len = len + (addr - erase_base_addr);
/* determine the number of blocks to erase */
nr_of_erase_blocks = (blt_int16u)(total_erase_len / FLASH_ERASE_BLOCK_SIZE);
if ((total_erase_len % FLASH_ERASE_BLOCK_SIZE) > 0)
{
nr_of_erase_blocks++;
}
/* erase all blocks one by one */
for (block_cnt=0; block_cnt<nr_of_erase_blocks; block_cnt++)
{
/* keep the watchdog happy */
CopService();
/* erase the block */
if (FlashOperate(FLASH_ERASE_SECTOR_CMD, erase_base_addr, 0x55aa) == BLT_FALSE)
{
/* error occurred */
return BLT_FALSE;
}
/* point to the next block's base address */
erase_base_addr += FLASH_ERASE_BLOCK_SIZE;
}
/* erase successful */
return BLT_TRUE;
} /*** end of FlashErase ***/
/************************************************************************************//**
** \brief Writes a checksum of the user program to non-volatile memory. This is
** performed once the entire user program has been programmed. Through
** the checksum, the bootloader can check if the programming session
** was completed, which indicates that a valid user programming is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWriteChecksum(void)
{
blt_int16u signature_checksum = 0;
blt_int8u byte_counter;
blt_int16u vectab_offset;
blt_addr checksum_address;
/* for the HCS12 target we defined the checksum as the 16-bit Two's complement value
* of the sum of all the 64 interrupt vector addresses, so basically a checksum over
* the contents of the entire user program interrupt vector table.
*
* the bootloader writes this 16-bit checksum value right after the vector table
* of the user program. note that this means one extra dummy entry must be added
* at the end of the user program's vector table to reserve storage space for the
* checksum.
*/
/* first check that the bootblock contains valid data. if not, this means the
* bootblock is not part of the reprogramming this time and therefore no
* new checksum needs to be written
*/
if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_TRUE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
/* perform decryption of the bootblock, before calculating the checksum and writing it
* to flash memory.
*/
if (FlashCryptoDecryptDataHook(bootBlockInfo.base_addr, bootBlockInfo.data,
FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
#endif
/* the bootblock contains the data for the last sector in flashLayout. the
* user program vector table and the checkum will be located at the end
* of this block. first determine the offset in the bootblock data to
* reach the start of the vector table.
*/
vectab_offset = FLASH_WRITE_BLOCK_SIZE - FLASH_VECTOR_TABLE_SIZE;
/* compute the checksum. note that the user program's vectors are not yet written
* to flash but are present in the bootblock data structure at this point.
*/
for (byte_counter=0; byte_counter<FLASH_VECTOR_TABLE_SIZE; byte_counter++)
{
signature_checksum += bootBlockInfo.data[vectab_offset + byte_counter];
}
signature_checksum = ~signature_checksum; /* one's complement */
signature_checksum += 1; /* two's complement */
/* write the checksum */
checksum_address = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
BOOT_FLASH_VECTOR_TABLE_CS_OFFSET;
return FlashWrite(checksum_address, sizeof(signature_checksum),
(blt_int8u *)&signature_checksum);
} /*** end of FlashWriteChecksum ***/
/************************************************************************************//**
** \brief Verifies the checksum, which indicates that a valid user program is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashVerifyChecksum(void)
{
blt_int16u signature_checksum = 0;
blt_int8u byte_counter;
blt_addr checksum_addr_lin;
blt_addr vector_table_addr_lin;
/* get linear address of the checksum */
checksum_addr_lin = (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
BOOT_FLASH_VECTOR_TABLE_CS_OFFSET);
/* get linear address of the vector table start */
vector_table_addr_lin = (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_VECTOR_TABLE_SIZE);
/* compute the checksum based on how it was written by FlashWriteChecksum() */
for (byte_counter=0; byte_counter<FLASH_VECTOR_TABLE_SIZE; byte_counter++)
{
signature_checksum += FlashGetLinearAddrByte(vector_table_addr_lin + byte_counter);
}
/* add the 16-bit checksum value */
signature_checksum += (((blt_int16u)FlashGetLinearAddrByte(checksum_addr_lin) << 8) +
FlashGetLinearAddrByte(checksum_addr_lin + 1));
/* sum should add up to an unsigned 16-bit value of 0 */
if (signature_checksum == 0)
{
/* checksum okay */
return BLT_TRUE;
}
/* checksum incorrect */
return BLT_FALSE;
} /*** end of FlashVerifyChecksum ***/
/************************************************************************************//**
** \brief Finalizes the flash driver operations. There could still be data in
** the currently active block that needs to be flashed.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashDone(void)
{
blt_int8u cnt;
/* check if there is still data waiting to be programmed in the boot block */
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if there is still data waiting to be programmed */
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* flash operations complete, so clear the RAM buffer with operation execution code */
for (cnt=0; cnt<(sizeof(flashExecCmd)/sizeof(flashExecCmd[0])); cnt++)
{
flashExecCmdRam[cnt] = 0;
}
/* still here so all is okay */
return BLT_TRUE;
} /*** end of FlashDone ***/
/************************************************************************************//**
** \brief Obtains the base address of the flash memory available to the user program.
** This is basically the last address in the flashLayout table converted to
** the physical address on the last page (0x3f), because this is where the
** address will be in.
** \return Base address.
**
****************************************************************************************/
blt_addr FlashGetUserProgBaseAddress(void)
{
blt_addr end_address_linear;
blt_addr end_address_physical_page_window;
blt_addr end_address_physical_page_3f;
end_address_linear = FLASH_END_ADDRESS + 1;
end_address_physical_page_window = FlashGetPhysAddr(end_address_linear);
end_address_physical_page_3f = end_address_physical_page_window + FLASH_PAGE_SIZE;
return end_address_physical_page_3f;
} /*** end of FlashGetUserProgBaseAddress ***/
/************************************************************************************//**
** \brief Copies data currently in flash to the block->data and sets the
** base address.
** \param block Pointer to flash block info structure to operate on.
** \param address Base address of the block data.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
{
blt_int8u oldPage;
/* check address alignment */
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* make sure that we are initializing a new block and not the same one */
if (block->base_addr == address)
{
/* block already initialized, so nothing to do */
return BLT_TRUE;
}
/* set the base address */
block->base_addr = address;
/* backup originally selected page */
oldPage = FLASH_PPAGE_REG;
/* select correct page */
FLASH_PPAGE_REG = FlashGetPhysPage(address);
/* copy the current data from flash */
CpuMemCopy((blt_addr)block->data, (blt_addr)FlashGetPhysAddr(address), FLASH_WRITE_BLOCK_SIZE);
/* restore originally selected page */
FLASH_PPAGE_REG = oldPage;
return BLT_TRUE;
} /*** end of FlashInitBlock ***/
/************************************************************************************//**
** \brief Switches blocks by programming the current one and initializing the
** next.
** \param block Pointer to flash block info structure to operate on.
** \param base_addr Base address of the next block.
** \return The pointer of the block info struct that is no being used, or a NULL
** pointer in case of error.
**
****************************************************************************************/
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
{
blt_addr last_block_base_addr;
/* get base address of the last write block. this is the base address of the boot
* block on this target.
*/
last_block_base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_WRITE_BLOCK_SIZE;
/* check if a switch needs to be made away from the boot block. in this case the boot
* block shouldn't be written yet, because this is done at the end of the programming
* session by FlashDone(), this is right after the checksum was written.
*/
if (block == &bootBlockInfo)
{
/* switch from the boot block to the generic block info structure */
block = &blockInfo;
}
/* check if a switch back into the bootblock is needed. in this case the generic block
* doesn't need to be written here yet.
*/
else if (base_addr == last_block_base_addr)
{
/* switch from the generic block to the boot block info structure */
block = &bootBlockInfo;
}
else
{
/* need to switch to a new block, so program the current one and init the next */
if (FlashWriteBlock(block) == BLT_FALSE)
{
return BLT_NULL;
}
}
/* initialize tne new block when necessary */
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
{
return BLT_NULL;
}
/* still here to all is okay */
return block;
} /*** end of FlashSwitchBlock ***/
/************************************************************************************//**
** \brief Programming is done per block. This function adds data to the block
** that is currently collecting data to be written to flash. If the
** address is outside of the current block, the current block is written
** to flash an a new block is initialized.
** \param block Pointer to flash block info structure to operate on.
** \param address Flash destination address.
** \param data Pointer to the byte array with data.
** \param len Number of bytes to add to the block.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len)
{
blt_addr current_base_addr;
blt_int8u *dst;
blt_int8u *src;
/* determine the current base address */
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
/* initialize the blockInfo struct for the current block */
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if the new data fits in the current block */
if (block->base_addr != current_base_addr)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
}
/* add the data to the current block, but check for block overflow */
dst = &(block->data[address - block->base_addr]);
src = data;
do
{
/* keep the watchdog happy */
CopService();
/* buffer overflow? */
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
/* reset destination pointer */
dst = &(block->data[0]);
}
/* write the data to the buffer */
*dst = *src;
/* update pointers */
dst++;
src++;
/* decrement byte counter */
len--;
}
while (len > 0);
/* still here so all is good */
return BLT_TRUE;
} /*** end of FlashAddToBlock ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
** array.
** \param block Pointer to flash block info structure to operate on.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
{
blt_bool result = BLT_TRUE;
blt_addr prog_addr;
blt_int16u prog_data;
blt_int16u word_cnt;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_FALSE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
#if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0)
/* note that the bootblock is already decrypted in FlashWriteChecksum(), if the
* internal checksum mechanism is used. Therefore don't decrypt it again.
*/
if (block != &bootBlockInfo)
#endif
{
/* perform decryption of the program data before writing it to flash memory. */
if (FlashCryptoDecryptDataHook(block->base_addr, block->data,
FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
return BLT_FALSE;
}
}
#endif
/* program all words in the block one by one */
for (word_cnt=0; word_cnt<(FLASH_WRITE_BLOCK_SIZE/sizeof(blt_int16u)); word_cnt++)
{
prog_addr = block->base_addr + (word_cnt * sizeof(blt_int16u));
prog_data = *(volatile blt_int16u *)(&block->data[word_cnt * sizeof(blt_int16u)]);
/* keep the watchdog happy */
CopService();
/* program the word to flash */
if (FlashOperate(FLASH_PROGRAM_WORD_CMD, prog_addr, prog_data) == BLT_FALSE)
{
/* error occurred */
result = BLT_FALSE;
break;
}
/* verify that the written data is actually there */
if (FlashGetLinearAddrByte(prog_addr) != (blt_int8u)(prog_data >> 8))
{
/* msb not correctly written */
result = BLT_FALSE;
break;
}
if (FlashGetLinearAddrByte(prog_addr+1) != (blt_int8u)(prog_data))
{
/* lsb not correctly written */
result = BLT_FALSE;
break;
}
}
/* still here so all is okay */
return result;
} /*** end of FlashWriteBlock ***/
/************************************************************************************//**
** \brief Reads the byte value from the linear address.
** \param addr Linear address.
** \return The byte value located at the linear address.
**
****************************************************************************************/
static blt_int8u FlashGetLinearAddrByte(blt_addr addr)
{
blt_int8u oldPage;
blt_int8u result;
/* backup originally selected page */
oldPage = FLASH_PPAGE_REG;
/* select correct page */
FLASH_PPAGE_REG = FlashGetPhysPage(addr);
/* read the byte value from the page address */
result = *((blt_int8u *)FlashGetPhysAddr(addr));
/* restore originally selected page */
FLASH_PPAGE_REG = oldPage;
/* return the read byte value */
return result;
} /*** end of FlashGetLinearAddrByte ***/
/************************************************************************************//**
** \brief Extracts the physical flash page number from a linear address.
** \param addr Linear address.
** \return The page number.
**
****************************************************************************************/
static blt_int8u FlashGetPhysPage(blt_addr addr)
{
return (blt_int8u)(addr / FLASH_PAGE_SIZE);
} /*** end of FlashGetPhysPage ***/
/************************************************************************************//**
** \brief Extracts the physical address on the flash page number from a
** linear address.
** \param addr Linear address.
** \return The physical address.
**
****************************************************************************************/
static blt_int16u FlashGetPhysAddr(blt_addr addr)
{
return (blt_int16u)(((blt_int16u)addr % FLASH_PAGE_SIZE) + FLASH_PAGE_OFFSET);
} /*** end of FlashGetPhysAddr ***/
/************************************************************************************//**
** \brief Executes the command. The actual code for the command execution is
** stored as location independant machine code in array flashExecCmd[].
** The contents of this array are temporarily copied to RAM. This way the
** function can be executed from RAM avoiding problem when try to perform
** a flash operation on the same flash block that this driver is located.
** \return none.
**
****************************************************************************************/
static void FlashExecuteCommand(void)
{
/* pointer to command execution function */
pFlashExeCmdFct pExecCommandFct;
blt_int8u cnt;
/* copy code for command execution to ram buffer */
for (cnt=0; cnt<(sizeof(flashExecCmd)/sizeof(flashExecCmd[0])); cnt++)
{
flashExecCmdRam[cnt] = flashExecCmd[cnt];
}
/* init the function pointer */
pExecCommandFct = (pFlashExeCmdFct)((void *)flashExecCmdRam);
/* call the command execution function */
pExecCommandFct();
} /*** end of FlashExecuteCommand ***/
/************************************************************************************//**
** \brief Prepares the flash command and executes it.
** \param cmd Command to be launched.
** \param addr Physical address for operation.
** \param data Data to write to addr for operation.
** \return BLT_TRUE if operation was successful, otherwise BLT_FALSE.
**
****************************************************************************************/
static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u data)
{
blt_bool result;
blt_int8u oldPage;
blt_int8u selPage;
/* set default result to error */
result = BLT_FALSE;
/* backup originally selected page */
oldPage = FLASH_PPAGE_REG;
/* calculate page number */
selPage = FlashGetPhysPage(addr);
/* select correct page */
FLASH_PPAGE_REG = selPage;
/* there are always a fixed number of pages per block. to get the block index number
* we simply divide by this number of pages per block. to one tricky thing is that
* the block number goes from high to low with increasing page numbers so we need to
* invert it. After the inversion we apply a bitmask to obtain the block selection bits
*/
FLASH->fcnfg &= ~FLASH_BLOCK_SEL_MASK;
FLASH->fcnfg |= (~(selPage / FLASH_PAGES_PER_BLOCK)) & FLASH_BLOCK_SEL_MASK;
/* clear error flags */
FLASH->fstat = (ACCERR_BIT | PVIOL_BIT);
/* command buffer empty? */
if ((FLASH->fstat & CBEIF_BIT) == CBEIF_BIT)
{
/* write data value to the physical address to operate on */
*((blt_int16u *)FlashGetPhysAddr(addr)) = data;
/* write the command */
FLASH->fcmd = cmd;
/* launch the actual command */
FlashExecuteCommand();
/* check error flags */
if ((FLASH->fstat & (ACCERR_BIT | PVIOL_BIT)) == 0)
{
/* operation was successful */
result = BLT_TRUE;
}
}
/* restore originally selected page */
FLASH_PPAGE_REG = oldPage;
return result;
} /*** end of FlashOperate ***/
/*********************************** end of flash.c ************************************/