openblt/Target/Source/HCS12/mbrtu.c

583 lines
25 KiB
C

/************************************************************************************//**
* \file Source/HCS12/mbrtu.c
* \brief Bootloader Modbus RTU communication interface source file.
* \ingroup Target_HCS12
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2023 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#if (BOOT_COM_MBRTU_ENABLE > 0)
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type with the layout of the UART related control registers. */
typedef volatile struct
{
volatile blt_int8u scibdh; /**< baudrate control register [SBR 12..8] */
volatile blt_int8u scibdl; /**< baudrate control register [SBR 8..0] */
volatile blt_int8u scicr1; /**< control register 1 */
volatile blt_int8u scicr2; /**< control register 2 */
volatile blt_int8u scisr1; /**< status regsiter 1 */
volatile blt_int8u scisr2; /**< status register 2 */
volatile blt_int8u scidrh; /**< data register high (for ninth bit) */
volatile blt_int8u scidrl; /**< data regsiter low */
} tUartRegs; /**< sci related registers */
/** \brief Structure type with the layout of the timer related control registers. */
typedef struct
{
volatile blt_int8u unused1; /**< input capture/output compare select */
volatile blt_int8u unused2; /**< compare force register */
volatile blt_int8u unused3; /**< output compare 7 mask register */
volatile blt_int8u unused4; /**< output compare 7 data register */
volatile blt_int16u tcnt; /**< timer counter register */
} tTimerRegs; /**< timer related registers */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Timeout for transmitting a byte in milliseconds. */
#define MBRTU_BYTE_TX_TIMEOUT_MS (10u)
#if (BOOT_COM_MBRTU_CHANNEL_INDEX == 0)
/** \brief Set UART base address to SCI0. */
#define UART_REGS_BASE_ADDRESS (0x00c8)
#elif (BOOT_COM_MBRTU_CHANNEL_INDEX == 1)
/** \brief Set UART base address to SCI1. */
#define UART_REGS_BASE_ADDRESS (0x00d0)
#endif
/** \brief Macro for accessing the UART related control registers. */
#define UART ((volatile tUartRegs *)UART_REGS_BASE_ADDRESS)
/** \brief Base address for the timer related control registers. */
#define TIMER_REGS_BASE_ADDRESS (0x0040)
/** \brief Macro for accessing the flash related control registers. */
#define TIMER ((volatile tTimerRegs *)TIMER_REGS_BASE_ADDRESS)
/****************************************************************************************
* Register definitions
****************************************************************************************/
/** \brief SCICR1 - parity type bit. */
#define PT_BIT (0x01)
/** \brief SCICR1 - parity enable bit. */
#define PE_BIT (0x02)
/** \brief SCICR1 - data format mode bit. */
#define M_BIT (0x10)
/** \brief SCICR2 - transmitter enable bit. */
#define TE_BIT (0x08)
/** \brief SCICR2 - receiver enable bit. */
#define RE_BIT (0x04)
/** \brief SCISR1 - parity error bit. */
#define PF_BIT (0x01)
/** \brief SCISR1 - framing error bit. */
#define FE_BIT (0x02)
/** \brief SCISR1 - receiver data register full bit. */
#define RDRF_BIT (0x20)
/** \brief SCISR1 - transmit complete bit. */
#define TC_BIT (0x40)
/** \brief SCISR1 - transmit data register empty bit. */
#define TDRE_BIT (0x80)
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Stores the number of free running counter ticks that represents the 3.5
* character delay time (T3_5) for Modbus RTU.
*/
static blt_int16u mbRtuT3_5Ticks;
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool MbRtuReceiveByte(blt_int8u *data);
static void MbRtuTransmitByte(blt_int8u data, blt_bool end_of_packet);
/************************************************************************************//**
** \brief Initializes the Modbus RTU communication interface.
** \attention It is the application's responsibility to initialize a timer peripheral
** to have an upwards counting free running counter, which runs at 100 kHz.
** \return none.
**
****************************************************************************************/
void MbRtuInit(void)
{
blt_int16u baudrate_sbr0_12;
blt_int16u startTimeTicks;
blt_int16u deltaTimeTicks;
blt_int16u currentTimeTicks;
blt_int8u rxDummy;
/* the current implementation supports SCI0 and SCI1. throw an assertion error in
* case a different UART channel is configured.
*/
ASSERT_CT((BOOT_COM_RS232_CHANNEL_INDEX == 0) || (BOOT_COM_RS232_CHANNEL_INDEX == 1));
/* the SCI subsystem only supports 1 stopbit. */
ASSERT_CT(BOOT_COM_MBRTU_STOPBITS == 1);
/* calculate the 3.5 character delay time in free running counter ticks. note that
* the free running counter runs at 100 kHz, so one tick is 10 us. For baudrates >
* 19200 bps, it can be fixed to 1750 us.
*/
if (BOOT_COM_MBRTU_BAUDRATE > 19200)
{
/* set T3_5 time to a fixed value of 1750 us. */
mbRtuT3_5Ticks = 175;
}
/* calculate the T3_5 time, because the baudrate is <= 19200 bps. */
else
{
/* T3_5 [us * 10] = 3.5 * Tchar = 3.5 * 11 * 100000 / baudrate = 3850000 / baudrate.
* make sure to do integer round up though. Make sure to add 1 to adjust for 10us
* timer resolution inaccuracy.
*/
mbRtuT3_5Ticks = (blt_int16u)(((3850000UL + (BOOT_COM_MBRTU_BAUDRATE - 1U)) /
BOOT_COM_MBRTU_BAUDRATE) + 1);
}
/* reset the SCI subsystem's configuration, which automatically configures it for
* 8,n,1 communication mode.
*/
UART->scicr2 = 0;
UART->scicr1 = 0;
UART->scibdh = 0;
UART->scibdl = 0;
/* configure the baudrate from BOOT_COM_MBRTU_BAUDRATE */
baudrate_sbr0_12 = (BOOT_CPU_SYSTEM_SPEED_KHZ * 1000ul) / 16 / BOOT_COM_MBRTU_BAUDRATE;
/* baudrate register value cannot be more than 13 bits */
ASSERT_RT((baudrate_sbr0_12 & 0xe000) == 0);
/* write first MSB then LSB for the baudrate to latch */
UART->scibdh = (blt_int8u)(baudrate_sbr0_12 >> 8);
UART->scibdl = (blt_int8u)baudrate_sbr0_12;
/* odd parity enabled? */
#if (BOOT_COM_MBRTU_PARITY == 1)
UART->scicr1 |= M_BIT | PE_BIT | PT_BIT;
#endif
/* even parity enabled? */
#if (BOOT_COM_MBRTU_PARITY == 2)
UART->scicr1 |= M_BIT | PE_BIT;
#endif
/* enable the transmitted and receiver */
UART->scicr2 |= (TE_BIT | RE_BIT);
/* enable the receiver output to be able to receive. */
MbRtuDriverOutputControlHook(BLT_FALSE);
/* wait for idle line detection. This is T3_5 time after reception of the last byte. */
startTimeTicks = MbRtuFreeRunningCounterGet();
do
{
/* service the watchdog. */
CopService();
/* get the current value of the free running counter. */
currentTimeTicks = MbRtuFreeRunningCounterGet();
/* check if a byte was received while waiting for the idle line. */
if (MbRtuReceiveByte(&rxDummy) == BLT_TRUE)
{
/* restart the idle line detection. */
startTimeTicks = currentTimeTicks;
}
/* calculate the number of ticks that elapsed since the start or since the last
* byte reception. Note that this calculation works, even if the free running counter
* overflowed.
*/
deltaTimeTicks = currentTimeTicks - startTimeTicks;
}
while (deltaTimeTicks < mbRtuT3_5Ticks);
} /*** end of MbRtuInit ***/
/************************************************************************************//**
** \brief Transmits a packet formatted for the communication interface.
** \param data Pointer to byte array with data that it to be transmitted.
** \param len Number of bytes that are to be transmitted.
** \return none.
**
****************************************************************************************/
void MbRtuTransmitPacket(blt_int8u *data, blt_int8u len)
{
blt_int16u data_index;
blt_int16u checksum;
blt_bool endOfPacket = BLT_FALSE;
/* Made static to lower stack load and +5 for Modbus RTU packet overhead. */
static blt_int8u txPacket[BOOT_COM_MBRTU_TX_MAX_DATA + 5];
/* On Modbus RTU, there must always be a T3_5 time separation between packet trans-
* missions.
*
* This bootloader uses XCP packets embedded in Modbus RTU packets. The XCP
* communication is always request / response based. That means that this packet is
* a response packet and it will only be sent, after the reception of a request packet.
*
* A response packet is only deemed valid, after the T3_5 idle time. This module
* implements the T3_5 end-of-packet time event detection. Consequently, it is already
* guaranteed that there is T3_5 between subsequent packet transmissions. As such, no
* further T3_5 wait time is needed here.
*/
/* verify validity of the len-parameter */
ASSERT_RT(len <= BOOT_COM_MBRTU_TX_MAX_DATA);
/* construct the Modbus RTU packet. start by adding the slave address. */
txPacket[0] = BOOT_COM_MBRTU_NODE_ID;
/* add the user-defined function code for embedding XCP packets. */
txPacket[1] = BOOT_COM_MBRTU_FCT_CODE_USER_XCP;
/* add the XCP packet length. */
txPacket[2] = len;
/* copy the XCP packet data. */
CpuMemCopy((blt_int32u)&txPacket[3], (blt_int32u)data, len);
/* calculate the checksum for the packet, including slave address, function code and
* extra XCP length.
*/
checksum = MbRtuCrcCalculate(&txPacket[0], len + 3);
/* add the checksum at the end of the packet */
txPacket[len + 3] = (blt_int8u)(checksum & 0xff);
txPacket[len + 4] = (blt_int8u)(checksum >> 8);
/* enable the driver output to be able to send. just make sure to wait a little around
* the togglng of the DE/NRE pin.
*/
MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_ENABLE_DELAY_US);
MbRtuDriverOutputControlHook(BLT_TRUE);
MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_ENABLE_DELAY_US);
/* transmit all the packet bytes one-by-one */
for (data_index = 0; data_index < (len + 5); data_index++)
{
/* keep the watchdog happy */
CopService();
/* last byte of the packet? */
if (data_index == ((len + 5) - 1))
{
/* update the end of packet flag. */
endOfPacket = BLT_TRUE;
}
/* write byte */
MbRtuTransmitByte(txPacket[data_index], endOfPacket);
}
/* enable the receiver output to be able to receive again. just make sure to wait a
* little around the togglng of the DE/NRE pin.
*/
MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_DISABLE_DELAY_US);
MbRtuDriverOutputControlHook(BLT_FALSE);
MbRtuDelay(BOOT_COM_MBRTU_DRIVER_OUTPUT_DISABLE_DELAY_US);
} /*** end of MbRtuTransmitPacket ***/
/************************************************************************************//**
** \brief Receives a communication interface packet if one is present.
** \param data Pointer to byte array where the data is to be stored.
** \param len Pointer where the length of the packet is to be stored.
** \return BLT_TRUE if a packet was received, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool MbRtuReceivePacket(blt_int8u *data, blt_int8u *len)
{
blt_bool result = BLT_FALSE;
blt_int8u rxByte;
blt_int16u currentTimeTicks;
blt_int16u deltaTimeTicks;
blt_int16u checksumCalculated;
blt_int16u checksumReceived;
/* Made static to lower stack load and +5 for Modbus RTU packet overhead. */
static blt_int8u rxPacket[BOOT_COM_MBRTU_RX_MAX_DATA + 5];
static blt_int8u rxLength = 0;
static blt_bool packetRxInProgress = BLT_FALSE;
static blt_int16u lastRxByteTimeTicks = 0;
/* get the current value of the free running counter. */
currentTimeTicks = MbRtuFreeRunningCounterGet();
/* check for a newly received byte. */
if (MbRtuReceiveByte(&rxByte) == BLT_TRUE)
{
/* store the time at which the byte was received. */
lastRxByteTimeTicks = currentTimeTicks;
/* is this the potential start of a new packet? */
if (packetRxInProgress == BLT_FALSE)
{
/* initialize the reception of a new packet. */
rxLength = 0;
packetRxInProgress = BLT_TRUE;
}
/* store the newly received byte in the buffer, with buffer overrun protection. */
if (rxLength < (sizeof(rxPacket)/sizeof(rxPacket[0])))
{
rxPacket[rxLength] = rxByte;
rxLength++;
}
/* buffer overrun occurred. received packet was longer than supported so discard
* the packet to try and sync to the next one.
*/
else
{
/* discard the partially received packet. */
packetRxInProgress = BLT_FALSE;
}
}
/* only attempt to detect the end of packet, when a reception is in progress. */
if (packetRxInProgress == BLT_TRUE)
{
/* calculate the number of ticks that elapsed since the last byte reception. note
* that this calculation works, even if the free running counter overflowed.
*/
deltaTimeTicks = currentTimeTicks - lastRxByteTimeTicks;
/* packet reception is assumed complete after T3_5 of not receiving new data. */
if (deltaTimeTicks >= mbRtuT3_5Ticks)
{
/* a Modbus RTU packet consists of at least the address field, function code and
* 16-bit CRC. Validate the packet length based on this info.
*/
if (rxLength >= 4)
{
/* calculate the packet checksum. */
checksumCalculated = MbRtuCrcCalculate(&rxPacket[0], rxLength - 2);
/* extract the checksum received with the packet. */
checksumReceived = rxPacket[rxLength - 2] | (rxPacket[rxLength - 1] << 8);
/* only continue with packet processing if the checksums match. */
if (checksumCalculated == checksumReceived)
{
/* we are only interested in Modbus RTU packets that are addressed to us and
* have an XCP packet embedded.
*/
if ( (rxPacket[0] == BOOT_COM_MBRTU_NODE_ID) &&
(rxPacket[1] == BOOT_COM_MBRTU_FCT_CODE_USER_XCP) )
{
/* An XCP packet embedded in a Modbus RTU packet has an extra XCP packet
* length value. Use it to double-check that the packet length is valid.
*/
if (rxPacket[2] == (rxLength - 5))
{
/* copy the packet's XCP data. */
CpuMemCopy((blt_int32u)data, (blt_int32u)&rxPacket[3], rxLength - 5);
/* set the packet's XCP length. */
*len = rxLength - 5;
/* update the result to success to indicate that this XCP packet is ready
* for processing.
*/
result = BLT_TRUE;
}
}
}
}
/* reset the packet reception in progress flag, to be able to receive the next. */
packetRxInProgress = BLT_FALSE;
}
}
/* give the result back to the caller. */
return result;
} /*** end of MbRtuReceivePacket ***/
/************************************************************************************//**
** \brief Receives a communication interface byte if one is present.
** \param data Pointer to byte where the data is to be stored.
** \return BLT_TRUE if a byte was received, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool MbRtuReceiveByte(blt_int8u *data)
{
blt_bool result = BLT_FALSE;
blt_int8u rxFlags;
/* read the reception related status bits. this is also the first step in clearing the
* error flags.
*/
rxFlags = UART->scisr1 & (RDRF_BIT | FE_BIT | PF_BIT);
/* check if a new byte was received by means of the RDRF-bit */
if ((rxFlags & RDRF_BIT) != 0)
{
/* update the result */
result = BLT_TRUE;
/* check for a frame error. the frame error check is important because it can detect
* a missing stopbit. on an RS485 bus without bias resistors, the A-B differential
* voltage is 0. for an RS485 transceiver this is neither a 0 nor a 1 bit, so
* undefined. most RS485 transceivers feature a reception failsafe function to drive
* the Rx output (going to the UART Rx) to a defined state of logic 1. in case the
* used RS485 transceiver doesn't have such a feature, it typically leaves the Rx
* output in a logic 0 state. this means that after the stop bit of the last packet
* byte, the UART Rx input sees a logic 0, and assumes it is a start bit. the
* remaining data bits will always be 0 and, most importantly no stop bit is
* present, causing a framing error. Long story short: if you don't check for the
* framing error flag, you might receive an extra byte with value 0, which is not
* actually transmitted on the RS485 bus. you can catch and ignore this byte by doing
* a frame error check.
*/
if ((rxFlags & FE_BIT) != 0)
{
/* ignore the byte because of a detected frame error. Note that the frame error
* flag auto-resets after reading the UART data register, which is done later on in
* this function.
*/
result = BLT_FALSE;
}
#if (BOOT_COM_MBRTU_PARITY > 0)
/* check for a parity error. */
if ((rxFlags & PF_BIT) != 0)
{
/* ignore the byte because of a detected parity error. Note that the parity error
* flag auto-resets after reading the UART data register, which is done later on in
* this function.
*/
result = BLT_FALSE;
}
#endif
/* store the received byte. note that this is also the second and last step in
* clearing the error flags.
*/
data[0] = UART->scidrl;
}
/* give the result back to the caller. */
return result;
} /*** end of MbRtuReceiveByte ***/
/************************************************************************************//**
** \brief Transmits a communication interface byte.
** \param data Value of byte that is to be transmitted.
** \param end_of_packet BLT_TRUE if this is the last byte of the packet, BLT_FALSE
** otherwise.
** \return none.
**
****************************************************************************************/
static void MbRtuTransmitByte(blt_int8u data, blt_bool end_of_packet)
{
blt_int32u timeout;
/* write byte to transmit holding register. */
UART->scidrl = data;
/* set timeout time to wait for transmit completion. */
timeout = TimerGet() + MBRTU_BYTE_TX_TIMEOUT_MS;
/* not the last byte of the packet? */
if (end_of_packet == BLT_FALSE)
{
/* wait for tx holding register to be empty */
while ((UART->scisr1 & TDRE_BIT) == 0)
{
/* keep the watchdog happy. */
CopService();
/* break loop upon timeout. this would indicate a hardware failure. */
if (TimerGet() > timeout)
{
break;
}
}
}
/* this is the last byte of a packet. */
else
{
/* wait for tx complete flag to be set. this is needed for the last byte, otherwise
* the transceiver's transmit output gets disabled with
* MbRtuDriverOutputControlHook() before the byte reception completes.
*/
while ((UART->scisr1 & TC_BIT) == 0)
{
/* keep the watchdog happy. */
CopService();
/* break loop upon timeout. this would indicate a hardware failure. */
if (TimerGet() > timeout)
{
break;
}
}
}
} /*** end of MbRtuTransmitByte ***/
/************************************************************************************//**
** \brief Obtains the counter value of the 100 kHz free running counter. Note that
** each count represent 10 us. The Modbus RTU communication module uses this
** free running counter for Modbus RTU packet timing related purposes. The
** already available 1 ms timer does not have the needed resolution for this
** purpose.
** \details This functionality reuses the timer's free running counter, which the
** timer module already initialized to count at BOOT_CPU_SYSTEM_SPEED_KHZ/4.
** \return Current value of the free running counter.
**
****************************************************************************************/
blt_int16u MbRtuFreeRunningCounterGet(void)
{
static blt_bool initialized = BLT_FALSE;
static blt_int16u counts_per_ten_us = 0;
static blt_int16u free_running_counter_last = 0;
static blt_int16u ten_us_tick_counter = 0;
blt_int16u free_running_counter_now;
blt_int16u delta_counts;
blt_int16u ten_us_ticks;
/* perform one-time initialization.*/
if (initialized == BLT_FALSE)
{
/* set the flag to make sure that this part only runs once. */
initialized = BLT_TRUE;
/* calculate how many counts of the timer's free running counter equals 10us,
* because one count of a 100 kHz counter equals that.
*/
counts_per_ten_us = BOOT_CPU_SYSTEM_SPEED_KHZ / 4 / 100;
/* initialize current value of the timer's free running counter. */
free_running_counter_last = TIMER->tcnt;
}
/* get the current value of the free running counter. */
free_running_counter_now = TIMER->tcnt;
/* calculate the number of counts that passed since the detection of the last
* ten microseconds event. Note that this calculation also works, in case the free
* running counter overflowed, thanks to integer math.
*/
delta_counts = free_running_counter_now - free_running_counter_last;
/* did one or more ten microsecond counts pass since the last event? */
if (delta_counts >= counts_per_ten_us)
{
/* calculate how many ten microsecond counts passed. */
ten_us_ticks = delta_counts / counts_per_ten_us;
/* update the counter. */
ten_us_tick_counter += ten_us_ticks;
/* store the counter value of the last event to detect the next one. */
free_running_counter_last += (ten_us_ticks * counts_per_ten_us);
}
/* return the current value of the 100 kHz free running counter to the caller. */
return ten_us_tick_counter;
} /*** end of MbRtuFreeRunningCounterGet ***/
#endif /* BOOT_COM_MBRTU_ENABLE > 0 */
/*********************************** end of mbrtu.c ************************************/