openblt/Target/Source/TRICORE_TC3/flash.c

1191 lines
55 KiB
C

/************************************************************************************//**
* \file Source/TRICORE_TC3/flash.c
* \brief Bootloader flash driver source file.
* \ingroup Target_TRICORE_TC3
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2022 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
#include "ram_func.h" /* RAM function macros */
#include "IfxDmu_reg.h" /* DMU register definitions */
#include "IfxCpu.h" /* CPU driver */
#include "IfxFlash.h" /* Flash driver */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Value for an invalid sector entry index into flashLayout[]. */
#define FLASH_INVALID_SECTOR_IDX (0xff)
/** \brief Value for an invalid flash address. */
#define FLASH_INVALID_ADDRESS (0xffffffff)
/** \brief Standard size of a flash block for writing. */
#define FLASH_WRITE_BLOCK_SIZE (512)
/** \brief Minimum erase size in bytes as defined by the hardware (logical sector). */
#define FLASH_ERASE_BLOCK_SIZE (16 * 1024)
/** \brief Total numbers of sectors in array flashLayout[]. */
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0]))
/** \brief End address of the bootloader programmable flash. */
#define FLASH_END_ADDRESS (flashLayout[FLASH_TOTAL_SECTORS-1].sector_start + \
flashLayout[FLASH_TOTAL_SECTORS-1].sector_size - 1)
/** \brief Offset into the user program where the checksum is located. For this target it
* is set to the last 32-bits of the 32 byte (0x20) section at the start of the
* user program, which is meant for the reset handler. The reset handler doesn't
* need the full 32 bytes that's reserved for it. Therefore this section can be
* shrunk in the user program's linker script, to only be 28 bytes (0x1C) in
* size. This then makes 4 bytes (32-bits) available for storing the bootloader's
* signature checksum placeholder.
* Note that this macro value can be overriden in blt_conf.h, in case you want to
* reserve space for the signature checksum at a different memory location. Just
* make sure it is located in the first FLASH_WRITE_BLOCK_SIZE bytes of the
* user program. When changing this value, don't forget to update the location
* where you reserve space for the signature checksum in the user program
* accordingly. Otherwise the bootloader might overwrite important program code
* with the calculated signature checksum value, which can result in your user
* program not running properly.
*/
#ifndef BOOT_FLASH_VECTOR_TABLE_CS_OFFSET
#define BOOT_FLASH_VECTOR_TABLE_CS_OFFSET (0x1C)
#endif
/****************************************************************************************
* Plausibility checks
****************************************************************************************/
#if (BOOT_FLASH_VECTOR_TABLE_CS_OFFSET >= FLASH_WRITE_BLOCK_SIZE)
#error "BOOT_FLASH_VECTOR_TABLE_CS_OFFSET is set too high. It must be located in the first writable block."
#endif
#ifndef BOOT_FLASH_CUSTOM_LAYOUT_ENABLE
#define BOOT_FLASH_CUSTOM_LAYOUT_ENABLE (0u)
#endif
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Flash sector descriptor type. */
typedef struct
{
blt_addr sector_start; /**< sector start address */
blt_int32u sector_size; /**< sector size in bytes */
blt_int8u sector_num; /**< sector number */
} tFlashSector;
/** \brief Structure type for grouping flash block information.
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
* flash block manager is implemented in this driver. this flash block manager
* depends on this flash block info structure. It holds the base address of
* the flash block and the data that should be programmed into the flash
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
*/
typedef struct
{
blt_addr base_addr;
blt_int8u data[FLASH_WRITE_BLOCK_SIZE];
} tFlashBlockInfo;
/****************************************************************************************
* Hook functions
****************************************************************************************/
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
extern blt_bool FlashCryptoDecryptDataHook(blt_addr address, blt_int8u * data,
blt_int32u size);
#endif
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len);
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
static blt_bool FlashEraseSectors(blt_int8u first_sector_idx,
blt_int8u last_sector_idx);
static blt_int8u FlashGetSectorIdx(blt_addr address);
static blt_bool FlashEraseLogicalSectors(blt_addr log_sector_base_addr,
blt_int16u num_log_sectors);
static blt_bool FlashWritePage(blt_addr page_base_addr, blt_int8u const * page_data);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief If desired, it is possible to set BOOT_FLASH_CUSTOM_LAYOUT_ENABLE to > 0
* in blt_conf.h and then implement your own version of the flashLayout[] table
* in a source-file with the name flash_layout.c. This way you customize the
* flash memory size reserved for the bootloader, without having to modify
* the flashLayout[] table in this file directly. This file will then include
* flash_layout.c so there is no need to compile it additionally with your
* project.
*/
#if (BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0)
/** \brief Array wit the layout of the flash memory.
* \details Also controls what part of the flash memory is reserved for the bootloader.
* If the bootloader size changes, the reserved sectors for the bootloader
* might need adjustment to make sure the bootloader doesn't get overwritten.
*/
static const tFlashSector flashLayout[] =
{
/* { 0xA0000000, 0x004000, 0}, flash sector 0 - reserved for bootloader */
/* { 0xA0004000, 0x004000, 1}, flash sector 1 - reserved for bootloader */
{ 0xA0008000, 0x004000, 2}, /* flash sector 2 - 16kb */
{ 0xA000C000, 0x004000, 3}, /* flash sector 3 - 16kb */
{ 0xA0010000, 0x004000, 4}, /* flash sector 4 - 16kb */
{ 0xA0014000, 0x004000, 5}, /* flash sector 5 - 16kb */
{ 0xA0018000, 0x004000, 6}, /* flash sector 6 - 16kb */
{ 0xA001C000, 0x004000, 7}, /* flash sector 7 - 16kb */
{ 0xA0020000, 0x004000, 8}, /* flash sector 8 - 16kb */
{ 0xA0024000, 0x004000, 9}, /* flash sector 9 - 16kb */
{ 0xA0028000, 0x004000, 10}, /* flash sector 10 - 16kb */
{ 0xA002C000, 0x004000, 11}, /* flash sector 11 - 16kb */
{ 0xA0030000, 0x004000, 12}, /* flash sector 12 - 16kb */
{ 0xA0034000, 0x004000, 13}, /* flash sector 13 - 16kb */
{ 0xA0038000, 0x004000, 14}, /* flash sector 14 - 16kb */
{ 0xA003C000, 0x004000, 15}, /* flash sector 15 - 16kb */
{ 0xA0040000, 0x020000, 16}, /* flash sector 16 - 128kb */
{ 0xA0060000, 0x020000, 17}, /* flash sector 17 - 128kb */
{ 0xA0080000, 0x020000, 18}, /* flash sector 18 - 128kb */
{ 0xA00A0000, 0x020000, 19}, /* flash sector 19 - 128kb */
{ 0xA00C0000, 0x020000, 20}, /* flash sector 20 - 128kb */
{ 0xA00E0000, 0x020000, 21}, /* flash sector 21 - 128kb */
#if (BOOT_NVM_SIZE_KB > 1024)
{ 0xA0100000, 0x020000, 22}, /* flash sector 22 - 128kb */
{ 0xA0120000, 0x020000, 23}, /* flash sector 23 - 128kb */
{ 0xA0140000, 0x020000, 24}, /* flash sector 24 - 128kb */
{ 0xA0160000, 0x020000, 25}, /* flash sector 25 - 128kb */
{ 0xA0180000, 0x020000, 26}, /* flash sector 26 - 128kb */
{ 0xA01A0000, 0x020000, 27}, /* flash sector 27 - 128kb */
{ 0xA01C0000, 0x020000, 28}, /* flash sector 28 - 128kb */
{ 0xA01E0000, 0x020000, 29}, /* flash sector 29 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 2048)
{ 0xA0200000, 0x020000, 30}, /* flash sector 30 - 128kb */
{ 0xA0220000, 0x020000, 31}, /* flash sector 31 - 128kb */
{ 0xA0240000, 0x020000, 32}, /* flash sector 32 - 128kb */
{ 0xA0260000, 0x020000, 33}, /* flash sector 33 - 128kb */
{ 0xA0280000, 0x020000, 34}, /* flash sector 34 - 128kb */
{ 0xA02A0000, 0x020000, 35}, /* flash sector 35 - 128kb */
{ 0xA02C0000, 0x020000, 36}, /* flash sector 36 - 128kb */
{ 0xA02E0000, 0x020000, 37}, /* flash sector 37 - 128kb */
{ 0xA0300000, 0x020000, 38}, /* flash sector 38 - 128kb */
{ 0xA0320000, 0x020000, 39}, /* flash sector 39 - 128kb */
{ 0xA0340000, 0x020000, 40}, /* flash sector 40 - 128kb */
{ 0xA0360000, 0x020000, 41}, /* flash sector 41 - 128kb */
{ 0xA0380000, 0x020000, 42}, /* flash sector 42 - 128kb */
{ 0xA03A0000, 0x020000, 43}, /* flash sector 43 - 128kb */
{ 0xA03C0000, 0x020000, 44}, /* flash sector 44 - 128kb */
{ 0xA03E0000, 0x020000, 45}, /* flash sector 45 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 4096)
{ 0xA0400000, 0x020000, 46}, /* flash sector 46 - 128kb */
{ 0xA0420000, 0x020000, 47}, /* flash sector 47 - 128kb */
{ 0xA0440000, 0x020000, 48}, /* flash sector 48 - 128kb */
{ 0xA0460000, 0x020000, 49}, /* flash sector 49 - 128kb */
{ 0xA0480000, 0x020000, 50}, /* flash sector 50 - 128kb */
{ 0xA04A0000, 0x020000, 51}, /* flash sector 51 - 128kb */
{ 0xA04C0000, 0x020000, 52}, /* flash sector 52 - 128kb */
{ 0xA04E0000, 0x020000, 53}, /* flash sector 53 - 128kb */
{ 0xA0500000, 0x020000, 54}, /* flash sector 54 - 128kb */
{ 0xA0520000, 0x020000, 55}, /* flash sector 55 - 128kb */
{ 0xA0540000, 0x020000, 56}, /* flash sector 56 - 128kb */
{ 0xA0560000, 0x020000, 57}, /* flash sector 57 - 128kb */
{ 0xA0580000, 0x020000, 58}, /* flash sector 58 - 128kb */
{ 0xA05A0000, 0x020000, 59}, /* flash sector 59 - 128kb */
{ 0xA05C0000, 0x020000, 60}, /* flash sector 60 - 128kb */
{ 0xA05E0000, 0x020000, 61}, /* flash sector 61 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 6144)
{ 0xA0600000, 0x020000, 62}, /* flash sector 62 - 128kb */
{ 0xA0620000, 0x020000, 63}, /* flash sector 63 - 128kb */
{ 0xA0640000, 0x020000, 64}, /* flash sector 64 - 128kb */
{ 0xA0660000, 0x020000, 65}, /* flash sector 65 - 128kb */
{ 0xA0680000, 0x020000, 66}, /* flash sector 66 - 128kb */
{ 0xA06A0000, 0x020000, 67}, /* flash sector 67 - 128kb */
{ 0xA06C0000, 0x020000, 68}, /* flash sector 68 - 128kb */
{ 0xA06E0000, 0x020000, 69}, /* flash sector 69 - 128kb */
{ 0xA0700000, 0x020000, 70}, /* flash sector 70 - 128kb */
{ 0xA0720000, 0x020000, 71}, /* flash sector 71 - 128kb */
{ 0xA0740000, 0x020000, 72}, /* flash sector 72 - 128kb */
{ 0xA0760000, 0x020000, 73}, /* flash sector 73 - 128kb */
{ 0xA0780000, 0x020000, 74}, /* flash sector 74 - 128kb */
{ 0xA07A0000, 0x020000, 75}, /* flash sector 75 - 128kb */
{ 0xA07C0000, 0x020000, 76}, /* flash sector 76 - 128kb */
{ 0xA07E0000, 0x020000, 77}, /* flash sector 77 - 128kb */
{ 0xA0800000, 0x020000, 78}, /* flash sector 78 - 128kb */
{ 0xA0820000, 0x020000, 79}, /* flash sector 79 - 128kb */
{ 0xA0840000, 0x020000, 80}, /* flash sector 80 - 128kb */
{ 0xA0860000, 0x020000, 81}, /* flash sector 81 - 128kb */
{ 0xA0880000, 0x020000, 82}, /* flash sector 82 - 128kb */
{ 0xA08A0000, 0x020000, 83}, /* flash sector 83 - 128kb */
{ 0xA08C0000, 0x020000, 84}, /* flash sector 84 - 128kb */
{ 0xA08E0000, 0x020000, 85}, /* flash sector 85 - 128kb */
{ 0xA0900000, 0x020000, 86}, /* flash sector 86 - 128kb */
{ 0xA0920000, 0x020000, 87}, /* flash sector 87 - 128kb */
{ 0xA0940000, 0x020000, 88}, /* flash sector 88 - 128kb */
{ 0xA0960000, 0x020000, 89}, /* flash sector 89 - 128kb */
{ 0xA0980000, 0x020000, 90}, /* flash sector 90 - 128kb */
{ 0xA09A0000, 0x020000, 91}, /* flash sector 91 - 128kb */
{ 0xA09C0000, 0x020000, 92}, /* flash sector 92 - 128kb */
{ 0xA09E0000, 0x020000, 93}, /* flash sector 93 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 10240)
{ 0xA0A00000, 0x020000, 94}, /* flash sector 94 - 128kb */
{ 0xA0A20000, 0x020000, 95}, /* flash sector 95 - 128kb */
{ 0xA0A40000, 0x020000, 96}, /* flash sector 96 - 128kb */
{ 0xA0A60000, 0x020000, 97}, /* flash sector 97 - 128kb */
{ 0xA0A80000, 0x020000, 98}, /* flash sector 98 - 128kb */
{ 0xA0AA0000, 0x020000, 99}, /* flash sector 99 - 128kb */
{ 0xA0AC0000, 0x020000, 100}, /* flash sector 100 - 128kb */
{ 0xA0AE0000, 0x020000, 101}, /* flash sector 101 - 128kb */
{ 0xA0B00000, 0x020000, 102}, /* flash sector 102 - 128kb */
{ 0xA0B20000, 0x020000, 103}, /* flash sector 103 - 128kb */
{ 0xA0B40000, 0x020000, 104}, /* flash sector 104 - 128kb */
{ 0xA0B60000, 0x020000, 105}, /* flash sector 105 - 128kb */
{ 0xA0B80000, 0x020000, 106}, /* flash sector 106 - 128kb */
{ 0xA0BA0000, 0x020000, 107}, /* flash sector 107 - 128kb */
{ 0xA0BC0000, 0x020000, 108}, /* flash sector 108 - 128kb */
{ 0xA0BE0000, 0x020000, 109}, /* flash sector 109 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 12288)
{ 0xA0C00000, 0x020000, 110}, /* flash sector 110 - 128kb */
{ 0xA0C20000, 0x020000, 111}, /* flash sector 111 - 128kb */
{ 0xA0C40000, 0x020000, 112}, /* flash sector 112 - 128kb */
{ 0xA0C60000, 0x020000, 113}, /* flash sector 113 - 128kb */
{ 0xA0C80000, 0x020000, 114}, /* flash sector 114 - 128kb */
{ 0xA0CA0000, 0x020000, 115}, /* flash sector 115 - 128kb */
{ 0xA0CC0000, 0x020000, 116}, /* flash sector 116 - 128kb */
{ 0xA0CE0000, 0x020000, 117}, /* flash sector 117 - 128kb */
{ 0xA0D00000, 0x020000, 118}, /* flash sector 118 - 128kb */
{ 0xA0D20000, 0x020000, 119}, /* flash sector 119 - 128kb */
{ 0xA0D40000, 0x020000, 120}, /* flash sector 120 - 128kb */
{ 0xA0D60000, 0x020000, 121}, /* flash sector 121 - 128kb */
{ 0xA0D80000, 0x020000, 122}, /* flash sector 122 - 128kb */
{ 0xA0DA0000, 0x020000, 123}, /* flash sector 123 - 128kb */
{ 0xA0DC0000, 0x020000, 124}, /* flash sector 124 - 128kb */
{ 0xA0DE0000, 0x020000, 125}, /* flash sector 125 - 128kb */
{ 0xA0E00000, 0x020000, 126}, /* flash sector 126 - 128kb */
{ 0xA0E20000, 0x020000, 127}, /* flash sector 127 - 128kb */
{ 0xA0E40000, 0x020000, 128}, /* flash sector 128 - 128kb */
{ 0xA0E60000, 0x020000, 129}, /* flash sector 129 - 128kb */
{ 0xA0E80000, 0x020000, 130}, /* flash sector 130 - 128kb */
{ 0xA0EA0000, 0x020000, 131}, /* flash sector 131 - 128kb */
{ 0xA0EC0000, 0x020000, 132}, /* flash sector 132 - 128kb */
{ 0xA0EE0000, 0x020000, 133}, /* flash sector 133 - 128kb */
{ 0xA0F00000, 0x020000, 134}, /* flash sector 134 - 128kb */
{ 0xA0F20000, 0x020000, 135}, /* flash sector 135 - 128kb */
{ 0xA0F40000, 0x020000, 136}, /* flash sector 136 - 128kb */
{ 0xA0F60000, 0x020000, 137}, /* flash sector 137 - 128kb */
{ 0xA0F80000, 0x020000, 138}, /* flash sector 138 - 128kb */
{ 0xA0FA0000, 0x020000, 139}, /* flash sector 139 - 128kb */
{ 0xA0FC0000, 0x020000, 140}, /* flash sector 140 - 128kb */
{ 0xA0FE0000, 0x020000, 141}, /* flash sector 141 - 128kb */
#endif
#if (BOOT_NVM_SIZE_KB > 16384)
#error "BOOT_NVM_SIZE_KB > 16384 is currently not supported."
#endif
};
#else
#include "flash_layout.c"
#endif /* BOOT_FLASH_CUSTOM_LAYOUT_ENABLE == 0 */
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Local variable with information about the flash block that is currently
* being operated on.
* \details The smallest amount of flash that can be programmed is
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
* and stores info in this variable. Whenever new data should be flashed, it
* is first added to a RAM buffer, which is part of this variable. Whenever
* the RAM buffer, which has the size of a flash block, is full or data needs
* to be written to a different block, the contents of the RAM buffer are
* programmed to flash. The flash block manager requires some software
* overhead, yet results is faster flash programming because data is first
* harvested, ideally until there is enough to program an entire flash block,
* before the flash device is actually operated on.
*/
static tFlashBlockInfo blockInfo;
/** \brief Local variable with information about the flash boot block.
* \details The first block of the user program holds the vector table, which on the
* STM32 is also the where the checksum is written to. Is it likely that
* the vector table is first flashed and then, at the end of the programming
* sequence, the checksum. This means that this flash block need to be written
* to twice. Normally this is not a problem with flash memory, as long as you
* write the same values to those bytes that are not supposed to be changed
* and the locations where you do write to are still in the erased 0xFF state.
* Unfortunately, writing twice to flash this way, does not work reliably on
* all micros. This is why we need to have an extra block, the bootblock,
* placed under the management of the block manager. This way is it possible
* to implement functionality so that the bootblock is only written to once
* at the end of the programming sequence.
*/
static tFlashBlockInfo bootBlockInfo;
/************************************************************************************//**
** \brief Initializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashInit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashInit ***/
/************************************************************************************//**
** \brief Reinitializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashReinit(void)
{
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
} /*** end of FlashReinit ***/
/************************************************************************************//**
** \brief Writes the data to flash through a flash block manager. Note that this
** function also checks that no data is programmed outside the flash
** memory region, so the bootloader can never be overwritten.
** \param addr Start address.
** \param len Length in bytes.
** \param data Pointer to the data buffer.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data)
{
blt_bool result = BLT_TRUE;
blt_addr base_addr;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
result = BLT_FALSE;
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* make sure the addresses are within the flash device */
if ((FlashGetSectorIdx(addr) == FLASH_INVALID_SECTOR_IDX) || \
(FlashGetSectorIdx(addr+len-1) == FLASH_INVALID_SECTOR_IDX))
{
result = BLT_FALSE;
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* if this is the bootblock, then let the boot block manager handle it */
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
if (base_addr == flashLayout[0].sector_start)
{
/* let the boot block manager handle it */
result = FlashAddToBlock(&bootBlockInfo, addr, data, len);
}
else
{
/* let the block manager handle it */
result = FlashAddToBlock(&blockInfo, addr, data, len);
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashWrite ***/
/************************************************************************************//**
** \brief Erases the flash memory. Note that this function also checks that no
** data is erased outside the flash memory region, so the bootloader can
** never be erased.
** \param addr Start address.
** \param len Length in bytes.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashErase(blt_addr addr, blt_int32u len)
{
blt_bool result = BLT_TRUE;
blt_int8u first_sector_idx;
blt_int8u last_sector_idx;
/* validate the len parameter */
if ((len - 1) > (FLASH_END_ADDRESS - addr))
{
result = BLT_FALSE;
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* obtain the first and last sector entry indices to the flashLayout[] array. */
first_sector_idx = FlashGetSectorIdx(addr);
last_sector_idx = FlashGetSectorIdx(addr+len-1);
/* check them */
if ((first_sector_idx == FLASH_INVALID_SECTOR_IDX) ||
(last_sector_idx == FLASH_INVALID_SECTOR_IDX))
{
result = BLT_FALSE;
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* erase the sectors */
result = FlashEraseSectors(first_sector_idx, last_sector_idx);
}
/* give the result back to the caller */
return result;
} /*** end of FlashErase ***/
/************************************************************************************//**
** \brief Writes a checksum of the user program to non-volatile memory. This is
** performed once the entire user program has been programmed. Through
** the checksum, the bootloader can check if the programming session
** was completed, which indicates that a valid user programming is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWriteChecksum(void)
{
blt_bool result = BLT_TRUE;
blt_int32u signature_checksum = 0;
/* for the TriCore TC3 target we defined the checksum as the One's complement value of
* the sum of the first 0x1C bytes in flash, which is the code of the reset handler.
*
* signature_checksum = One's complement of (SUM(32-bit values in first 0x1C))
*
* the bootloader writes this 32-bit checksum value right the code reserved for the
* reset handler (0x1C). note that the user program linker script needs to be adjusted
* for this, to make sure 32-bits at 0x1C after that start of the user program is
* reserved for this, because the bootloader will overwrite it.
*/
/* first check that the bootblock contains valid data. if not, this means the
* bootblock is not part of the reprogramming this time and therefore no
* new checksum needs to be written
*/
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
/* perform decryption of the bootblock, before calculating the checksum and writing it
* to flash memory.
*/
if (FlashCryptoDecryptDataHook(bootBlockInfo.base_addr, bootBlockInfo.data,
FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
result = BLT_FALSE;
}
#endif
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* compute the checksum. note that the user program's vectors are not yet written
* to flash but are present in the bootblock data structure at this point.
*/
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x00]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x04]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x08]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x0C]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x10]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x14]));
signature_checksum += *((blt_int32u *)(&bootBlockInfo.data[0+0x18]));
signature_checksum = ~signature_checksum; /* one's complement */
/* write the checksum */
result = FlashWrite(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET,
sizeof(blt_addr), (blt_int8u *)&signature_checksum);
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashWriteChecksum ***/
/************************************************************************************//**
** \brief Verifies the checksum, which indicates that a valid user program is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashVerifyChecksum(void)
{
blt_bool result = BLT_TRUE;
blt_int32u signature_checksum = 0;
blt_int32u signature_checksum_rom;
/* verify the checksum based on how it was written by FlashWriteChecksum(). */
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x04));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x08));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x0C));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x10));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x14));
signature_checksum += *((blt_int32u *)(flashLayout[0].sector_start+0x18));
signature_checksum = ~signature_checksum; /* one's complement */
/* read the checksum value from flash that was writtin by the bootloader at the end
* of the last firmware update
*/
signature_checksum_rom = *((blt_int32u *)(flashLayout[0].sector_start+BOOT_FLASH_VECTOR_TABLE_CS_OFFSET));
/* verify that checksums. they should both be the same. */
if (signature_checksum != signature_checksum_rom)
{
/* checksum not okay */
result = BLT_FALSE;
}
/* give the result back to the caller */
return result;
} /*** end of FlashVerifyChecksum ***/
/************************************************************************************//**
** \brief Finalizes the flash driver operations. There could still be data in
** the currently active block that needs to be flashed.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashDone(void)
{
blt_bool result = BLT_TRUE;
/* check if there is still data waiting to be programmed in the boot block */
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
{
/* update the result value to flag the error */
result = BLT_FALSE;
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* check if there is still data waiting to be programmed */
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
{
/* update the result value to flag the error */
result = BLT_FALSE;
}
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashDone ***/
/************************************************************************************//**
** \brief Obtains the base address of the flash memory available to the user program.
** This is basically the first address in the flashLayout table.
** \return Base address.
**
****************************************************************************************/
blt_addr FlashGetUserProgBaseAddress(void)
{
blt_addr result;
result = flashLayout[0].sector_start;
/* give the result back to the caller */
return result;
} /*** end of FlashGetUserProgBaseAddress ***/
/************************************************************************************//**
** \brief Copies data currently in flash to the block->data and sets the
** base address.
** \param block Pointer to flash block info structure to operate on.
** \param address Base address of the block data.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
{
blt_bool result = BLT_TRUE;
/* check address alignment */
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0)
{
/* update the result value to flag the error */
result = BLT_FALSE;
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* make sure that we are initializing a new block and not the same one */
if (block->base_addr != address)
{
/* set the base address and copies the current data from flash */
block->base_addr = address;
CpuMemCopy((blt_addr)block->data, address, FLASH_WRITE_BLOCK_SIZE);
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashInitBlock ***/
/************************************************************************************//**
** \brief Switches blocks by programming the current one and initializing the
** next.
** \param block Pointer to flash block info structure to operate on.
** \param base_addr Base address of the next block.
** \return The pointer of the block info struct that is now being used, or a NULL
** pointer in case of error.
**
****************************************************************************************/
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
{
tFlashBlockInfo * result = BLT_NULL;
/* check if a switch needs to be made away from the boot block. in this case the boot
* block shouldn't be written yet, because this is done at the end of the programming
* session by FlashDone(), this is right after the checksum was written.
*/
if (block == &bootBlockInfo)
{
/* switch from the boot block to the generic block info structure */
block = &blockInfo;
result = block;
}
/* check if a switch back into the bootblock is needed. in this case the generic block
* doesn't need to be written here yet.
*/
else if (base_addr == flashLayout[0].sector_start)
{
/* switch from the generic block to the boot block info structure */
block = &bootBlockInfo;
base_addr = flashLayout[0].sector_start;
result = block;
}
/* no switching between the generic block and the bootblock needed. it is a switch
* within a generic block. the current block needs to be first programmed before a
* switch to the new one can be make.
*/
else
{
/* start by initializing the result to success */
result = block;
/* need to switch to a new block, so program the current one and init the next */
if (FlashWriteBlock(block) == BLT_FALSE)
{
/* invalidate the result value to flag the error */
result = BLT_NULL;
}
}
/* only continue if all is okay sofar */
if (result != BLT_NULL)
{
/* initialize the new block when necessary */
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
{
/* invalidate the result value to flag the error */
result = BLT_NULL;
}
}
/* Give the result back to the caller. */
return result;
} /*** end of FlashSwitchBlock ***/
/************************************************************************************//**
** \brief Programming is done per block. This function adds data to the block
** that is currently collecting data to be written to flash. If the
** address is outside of the current block, the current block is written
** to flash an a new block is initialized.
** \param block Pointer to flash block info structure to operate on.
** \param address Flash destination address.
** \param data Pointer to the byte array with data.
** \param len Number of bytes to add to the block.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len)
{
blt_bool result = BLT_TRUE;
blt_addr current_base_addr;
blt_int8u *dst;
blt_int8u *src;
/* determine the current base address */
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
/* initialize the blockInfo struct for the current block */
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
{
result = BLT_FALSE;
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* check if the new data fits in the current block */
if (block->base_addr != current_base_addr)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr);
if (block == BLT_NULL)
{
result = BLT_FALSE;
}
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* add the data to the current block, but check for block overflow */
dst = &(block->data[address - block->base_addr]);
src = data;
do
{
/* keep the watchdog happy */
CopService();
/* buffer overflow? */
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE);
if (block == BLT_NULL)
{
/* flag error and stop looping */
result = BLT_FALSE;
break;
}
/* reset destination pointer */
dst = &(block->data[0]);
}
/* write the data to the buffer */
*dst = *src;
/* update pointers */
dst++;
src++;
/* decrement byte counter */
len--;
}
while (len > 0);
}
/* give the result back to the caller */
return result;
} /*** end of FlashAddToBlock ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
** array.
** \param block Pointer to flash block info structure to operate on.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
{
blt_bool result = BLT_TRUE;
blt_addr page_addr;
blt_int8u * page_data;
blt_int32u page_cnt;
/* configuration check. */
ASSERT_CT((FLASH_WRITE_BLOCK_SIZE % IFXFLASH_PFLASH_PAGE_LENGTH) == 0);
/* check that the address is actually within flash */
if (FlashGetSectorIdx(block->base_addr) == FLASH_INVALID_SECTOR_IDX)
{
result = BLT_FALSE;
}
#if (BOOT_FLASH_CRYPTO_HOOKS_ENABLE > 0)
#if (BOOT_NVM_CHECKSUM_HOOKS_ENABLE == 0)
/* note that the bootblock is already decrypted in FlashWriteChecksum(), if the
* internal checksum mechanism is used. Therefore don't decrypt it again.
*/
if (block != &bootBlockInfo)
#endif
{
/* perform decryption of the program data before writing it to flash memory. */
if (FlashCryptoDecryptDataHook(block->base_addr, block->data,
FLASH_WRITE_BLOCK_SIZE) == BLT_FALSE)
{
result = BLT_FALSE;
}
}
#endif
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* program all pages in the block one by one. */
for (page_cnt=0; page_cnt < (FLASH_WRITE_BLOCK_SIZE/IFXFLASH_PFLASH_PAGE_LENGTH); page_cnt++)
{
/* determine the page's base address and data pointer. */
page_addr = block->base_addr + (page_cnt * IFXFLASH_PFLASH_PAGE_LENGTH);
page_data = &block->data[page_cnt * IFXFLASH_PFLASH_PAGE_LENGTH];
/* keep the watchdog happy */
CopService();
/* program the data to the page. */
if (FlashWritePage(page_addr, page_data) == BLT_FALSE)
{
/* flag the error and stop the loop. */
result = BLT_FALSE;
break;
}
}
}
/* Give the result back to the caller. */
return result;
} /*** end of FlashWriteBlock ***/
/************************************************************************************//**
** \brief Erases the flash sectors from indices first_sector_idx up until
** last_sector_idx into the flashLayout[] array.
** \param first_sector_idx First flash sector number index into flashLayout[].
** \param last_sector_idx Last flash sector number index into flashLayout[].
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashEraseSectors(blt_int8u first_sector_idx, blt_int8u last_sector_idx)
{
blt_bool result = BLT_TRUE;
blt_int8u sectorIdx;
blt_addr sectorBaseAddr;
blt_int32u sectorSize;
blt_addr logSectorBaseAddr;
blt_int16u numOfLogSectorsToErase;
blt_bool logSectorEraseResult;
/* validate the sector numbers */
if (first_sector_idx > last_sector_idx)
{
result = BLT_FALSE;
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
if (last_sector_idx > (FLASH_TOTAL_SECTORS-1))
{
result = BLT_FALSE;
}
}
/* only continue if all is okay so far */
if (result == BLT_TRUE)
{
/* erase the sectors one by one */
for (sectorIdx = first_sector_idx; sectorIdx <= last_sector_idx; sectorIdx++)
{
/* get information about the sector */
sectorBaseAddr = flashLayout[sectorIdx].sector_start;
sectorSize = flashLayout[sectorIdx].sector_size;
/* validate the sector information */
if ( (sectorBaseAddr == FLASH_INVALID_ADDRESS) || (sectorSize == 0) )
{
/* invalid sector information. flag error and abort erase operation */
result = BLT_FALSE;
break;
}
/* erase sector could comprise of multiple logical sectors. calculate how many. */
numOfLogSectorsToErase = (blt_int16u)(sectorSize / FLASH_ERASE_BLOCK_SIZE);
if ((sectorSize % FLASH_ERASE_BLOCK_SIZE) > 0)
{
numOfLogSectorsToErase++;
}
/* sanity check. the flash command processor on the microcontroler can handle
* erasing multiple sectors, but only if it span <= 512 kb. If this assertion
* triggers, then there is an entry in the flashLayout[] table that has a sector
* size of more than 512kb. correct the entries and then try again.
*/
ASSERT_RT(numOfLogSectorsToErase <= ((512UL*1024UL)/FLASH_ERASE_BLOCK_SIZE));
/* service the watchdog */
CopService();
/* set the base address of the first logical sector to erase. */
logSectorBaseAddr = sectorBaseAddr;
/* erase the logical sectors. */
logSectorEraseResult = FlashEraseLogicalSectors(logSectorBaseAddr, numOfLogSectorsToErase);
/* was an error dectected during the sector erase? */
if(logSectorEraseResult == BLT_FALSE)
{
/* could not perform erase operation */
result = BLT_FALSE;
/* error detected so don't bother continuing with the loop */
break;
}
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashEraseSectors ***/
/************************************************************************************//**
** \brief Erases the logical sectors starting at the specified base address.
** \attention This function must run from program scratch RAM and not from flash. As
** such, it should also not call any functions that are not in RAM. Calling
** inline functions is okay though.
** \param log_sector_base_addr Base address of the first logical sector.
** \param num_log_sectors Total number of logical sectors to erase.
** \return BLT_TRUE if the logical sectors were successfully erased, BLT_FALSE
** otherwise.
**
****************************************************************************************/
BLT_RAM_FUNC_BEGIN
static blt_bool FlashEraseLogicalSectors(blt_addr log_sector_base_addr,
blt_int16u num_log_sectors)
{
blt_bool result = BLT_TRUE;
blt_int16u endInitSafetyPassword;
blt_bool alreadyErased = BLT_FALSE;
/* only continue if the specified address is properly aligned to a logical sector. */
if ((log_sector_base_addr % FLASH_ERASE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* first clear all error and status flags. */
IfxFlash_clearStatus(0);
/* perform an erase verify of the sectors. they might already be erased. */
IfxFlash_eraseVerifyMultipleSectors(log_sector_base_addr, num_log_sectors);
/* wait until the command completed. */
IfxFlash_waitUnbusyAll();
/* only evaluate the result if no sequence error was detected. */
if (MODULE_DMU.HF_ERRSR.B.SQER == 0)
{
/* if the sector is already erased, no verification error is detected. */
if (MODULE_DMU.HF_ERRSR.B.EVER == 0)
{
alreadyErased = BLT_TRUE;
}
}
/* Only continue if the sectors are not in the erase state. */
if (alreadyErased == BLT_FALSE)
{
/* clear all error and status flags. */
IfxFlash_clearStatus(0);
/* get the current password of the Safety WatchDog module and disable EndInit
* protection.
*/
endInitSafetyPassword = IfxScuWdt_getSafetyWatchdogPasswordInline();
IfxScuWdt_clearSafetyEndinitInline(endInitSafetyPassword);
/* erase the sectors. */
IfxFlash_eraseMultipleSectors(log_sector_base_addr, num_log_sectors);
/* re-enable EndInit protection. */
IfxScuWdt_setSafetyEndinitInline(endInitSafetyPassword);
/* wait until the sectors are erased. */
IfxFlash_waitUnbusyAll();
/* clear all error and status flags. */
IfxFlash_clearStatus(0);
/* perform an erase verify of the sectors to verify success. */
IfxFlash_eraseVerifyMultipleSectors(log_sector_base_addr, num_log_sectors);
/* wait until the command completed. */
IfxFlash_waitUnbusyAll();
/* no sequency error should be detected and the sectors should be in the erased
* state.
*/
if ( (MODULE_DMU.HF_ERRSR.B.SQER != 0) || (MODULE_DMU.HF_ERRSR.B.EVER != 0) )
{
/* erase operation was not successful. update the result accordingly. */
result = BLT_FALSE;
}
}
/* give the result back to the caller. */
return result;
} /*** end of FlashEraseLogicalSector ***/
BLT_RAM_FUNC_END
/************************************************************************************//**
** \brief Programs data to a flash page starting at the specified base address.
** \attention This function must run from program scratch RAM and not from flash. As
** such, it should also not call any functions that are not in RAM. Calling
** inline functions is okay though.
** \param page_base_addr Base address of the flash page.
** \param page_data Pointer to the byte array with data to program to the flash page.
** \return BLT_TRUE if the page was successfully programmed, BLT_FALSE otherwise.
**
****************************************************************************************/
BLT_RAM_FUNC_BEGIN
static blt_bool FlashWritePage(blt_addr page_base_addr, blt_int8u const * page_data)
{
blt_bool result = BLT_TRUE;
blt_int16u endInitSafetyPassword;
blt_int32u dword_cnt;
blt_int32u const * page_data_ptr;
blt_int32u const * word_flash_ptr;
blt_int32u const * word_data_ptr;
blt_int32u word_cnt;
/* only continue if the specified address is properly aligned to a flash page. */
if ((page_base_addr % IFXFLASH_PFLASH_PAGE_LENGTH) != 0)
{
return BLT_FALSE;
}
/* get the current password of the Safety WatchDog module. */
endInitSafetyPassword = IfxScuWdt_getSafetyWatchdogPasswordInline();
/* initialize the data pointer to point to the first word for the page. */
page_data_ptr = (blt_int32u const *)page_data;
/* clear all error and status flags. */
IfxFlash_clearStatus(0);
/* enter page mode which is needed before loading data into the assembly buffer and
* then writing the data to the page.
*/
IfxFlash_enterPageMode(page_base_addr);
/* wait until the command completed. */
IfxFlash_waitUnbusyAll();
/* write the data into the assembly buffer, two words at a time. */
for (dword_cnt=0; dword_cnt<(IFXFLASH_PFLASH_PAGE_LENGTH/(sizeof(blt_int32u) * 2)); dword_cnt++)
{
/* write to the assembly buffer. note that flash command processor automatically
* increments the write pointer for the next call. this means that there is no need
* to increment the page's base address.
*/
IfxFlash_loadPage2X32(page_base_addr, page_data_ptr[0], page_data_ptr[1]);
/* update the page data pointer to point to the next two words. */
page_data_ptr++;
page_data_ptr++;
}
/* disable EndInit protection. */
IfxScuWdt_clearSafetyEndinitInline(endInitSafetyPassword);
/* write the page. note that this automatically leaves page mode. */
IfxFlash_writePage(page_base_addr);
/* re-enable EndInit protection. */
IfxScuWdt_setSafetyEndinitInline(endInitSafetyPassword);
/* wait until the page is programmed. */
IfxFlash_waitUnbusyAll();
/* no sequency or programming error should have been detected. */
if ( (MODULE_DMU.HF_ERRSR.B.SQER != 0) || (MODULE_DMU.HF_ERRSR.B.PVER != 0) )
{
/* write operation was not successful. update the result accordingly. */
result = BLT_FALSE;
}
/* page programming completed without an error? */
if (result == BLT_TRUE)
{
/* initialize flash and data pointers to the start of the page. */
word_flash_ptr = (blt_int32u const *)page_base_addr;
word_data_ptr = (blt_int32u const *)page_data;
/* verify that the written data is actually there, one word at a time. */
for (word_cnt=0; word_cnt<(IFXFLASH_PFLASH_PAGE_LENGTH/sizeof(blt_int32u)); word_cnt++)
{
/* does the data written to flash have the expected value? */
if (*word_flash_ptr != *word_data_ptr)
{
/* flag the error and stop the verification loop. */
result = BLT_FALSE;
break;
}
/* update pointers for the next word to check. */
word_flash_ptr++;
word_data_ptr++;
}
}
/* give the result back to the caller. */
return result;
} /*** end of FlashWritePage ***/
BLT_RAM_FUNC_END
/************************************************************************************//**
** \brief Determines the index into the flashLayout[] array of the flash sector that
** the specified address is in.
** \param address Address in the flash sector.
** \return Flash sector index in flashLayout[] or FLASH_INVALID_SECTOR_IDX.
**
****************************************************************************************/
static blt_int8u FlashGetSectorIdx(blt_addr address)
{
blt_int8u result = FLASH_INVALID_SECTOR_IDX;
blt_int8u sectorIdx;
/* search through the sectors to find the right one */
for (sectorIdx = 0; sectorIdx < FLASH_TOTAL_SECTORS; sectorIdx++)
{
/* keep the watchdog happy */
CopService();
/* is the address in this sector? */
if ((address >= flashLayout[sectorIdx].sector_start) && \
(address < (flashLayout[sectorIdx].sector_start + \
flashLayout[sectorIdx].sector_size)))
{
/* update the result value and stop looping */
result = sectorIdx;
break;
}
}
/* give the result back to the caller */
return result;
} /*** end of FlashGetSectorIdx ***/
/*********************************** end of flash.c ************************************/