mirror of https://github.com/rusefi/openblt.git
433 lines
18 KiB
C
433 lines
18 KiB
C
/************************************************************************************//**
|
|
* \file Demo/ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio/Prog/boot.c
|
|
* \brief Demo program bootloader interface source file.
|
|
* \ingroup Prog_ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio
|
|
* \internal
|
|
*----------------------------------------------------------------------------------------
|
|
* C O P Y R I G H T
|
|
*----------------------------------------------------------------------------------------
|
|
* Copyright (c) 2018 by Feaser http://www.feaser.com All rights reserved
|
|
*
|
|
*----------------------------------------------------------------------------------------
|
|
* L I C E N S E
|
|
*----------------------------------------------------------------------------------------
|
|
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as published by the Free
|
|
* Software Foundation, either version 3 of the License, or (at your option) any later
|
|
* version.
|
|
*
|
|
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
|
|
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
|
* PURPOSE. See the GNU General Public License for more details.
|
|
*
|
|
* You have received a copy of the GNU General Public License along with OpenBLT. It
|
|
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
|
|
*
|
|
* \endinternal
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Include files
|
|
****************************************************************************************/
|
|
#include "header.h" /* generic header */
|
|
|
|
|
|
/****************************************************************************************
|
|
* Function prototypes
|
|
****************************************************************************************/
|
|
#if (BOOT_COM_UART_ENABLE > 0)
|
|
static void BootComUartInit(void);
|
|
static void BootComUartCheckActivationRequest(void);
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
static void BootComCanInit(void);
|
|
static void BootComCanCheckActivationRequest(void);
|
|
#endif
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootComInit(void)
|
|
{
|
|
#if (BOOT_COM_UART_ENABLE > 0)
|
|
BootComUartInit();
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
BootComCanInit();
|
|
#endif
|
|
} /*** end of BootComInit ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootComCheckActivationRequest(void)
|
|
{
|
|
#if (BOOT_COM_UART_ENABLE > 0)
|
|
BootComUartCheckActivationRequest();
|
|
#endif
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
BootComCanCheckActivationRequest();
|
|
#endif
|
|
} /*** end of BootComCheckActivationRequest ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Bootloader activation function.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
void BootActivate(void)
|
|
{
|
|
/* perform software reset to activate the bootoader again */
|
|
NVIC_SystemReset();
|
|
} /*** end of BootActivate ***/
|
|
|
|
|
|
#if (BOOT_COM_UART_ENABLE > 0)
|
|
/****************************************************************************************
|
|
* U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Macro definitions
|
|
****************************************************************************************/
|
|
/** \brief Timeout time for the reception of a CTO packet. The timer is started upon
|
|
* reception of the first packet byte.
|
|
*/
|
|
#define UART_CTO_RX_PACKET_TIMEOUT_MS (100u)
|
|
|
|
|
|
/****************************************************************************************
|
|
* Function prototypes
|
|
****************************************************************************************/
|
|
static unsigned char UartReceiveByte(unsigned char *data);
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the UART communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComUartInit(void)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStruct;
|
|
USART_InitTypeDef USART_InitStruct;
|
|
|
|
/* enable UART peripheral clock */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
|
|
/* enable GPIO peripheral clock for transmitter and receiver pins */
|
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
|
|
/* configure USART Tx as alternate function push-pull */
|
|
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
|
|
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2;
|
|
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOA, &GPIO_InitStruct);
|
|
/* Configure USART Rx as alternate function input floating */
|
|
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
|
|
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3;
|
|
GPIO_Init(GPIOA, &GPIO_InitStruct);
|
|
/* configure UART communcation parameters */
|
|
USART_InitStruct.USART_BaudRate = BOOT_COM_UART_BAUDRATE;
|
|
USART_InitStruct.USART_WordLength = USART_WordLength_8b;
|
|
USART_InitStruct.USART_StopBits = USART_StopBits_1;
|
|
USART_InitStruct.USART_Parity = USART_Parity_No;
|
|
USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
|
|
USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
|
|
USART_Init(USART2, &USART_InitStruct);
|
|
/* enable UART */
|
|
USART_Cmd(USART2, ENABLE);
|
|
} /*** end of BootComUartInit ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComUartCheckActivationRequest(void)
|
|
{
|
|
static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1];
|
|
static unsigned char xcpCtoRxLength;
|
|
static unsigned char xcpCtoRxInProgress = 0;
|
|
static unsigned long xcpCtoRxStartTime = 0;
|
|
|
|
/* start of cto packet received? */
|
|
if (xcpCtoRxInProgress == 0)
|
|
{
|
|
/* store the message length when received */
|
|
if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1)
|
|
{
|
|
/* check that the length has a valid value. it should not be 0 */
|
|
if ( (xcpCtoReqPacket[0] > 0) &&
|
|
(xcpCtoReqPacket[0] <= BOOT_COM_UART_RX_MAX_DATA) )
|
|
{
|
|
/* store the start time */
|
|
xcpCtoRxStartTime = TimerGet();
|
|
/* indicate that a cto packet is being received */
|
|
xcpCtoRxInProgress = 1;
|
|
/* reset packet data count */
|
|
xcpCtoRxLength = 0;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* store the next packet byte */
|
|
if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1)
|
|
{
|
|
/* increment the packet data count */
|
|
xcpCtoRxLength++;
|
|
|
|
/* check to see if the entire packet was received */
|
|
if (xcpCtoRxLength == xcpCtoReqPacket[0])
|
|
{
|
|
/* done with cto packet reception */
|
|
xcpCtoRxInProgress = 0;
|
|
|
|
/* check if this was an XCP CONNECT command */
|
|
if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00))
|
|
{
|
|
/* connection request received so start the bootloader */
|
|
BootActivate();
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* check packet reception timeout */
|
|
if (TimerGet() > (xcpCtoRxStartTime + UART_CTO_RX_PACKET_TIMEOUT_MS))
|
|
{
|
|
/* cancel cto packet reception due to timeout. note that this automatically
|
|
* discards the already received packet bytes, allowing the host to retry.
|
|
*/
|
|
xcpCtoRxInProgress = 0;
|
|
}
|
|
}
|
|
}
|
|
} /*** end of BootComUartCheckActivationRequest ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives a communication interface byte if one is present.
|
|
** \param data Pointer to byte where the data is to be stored.
|
|
** \return 1 if a byte was received, 0 otherwise.
|
|
**
|
|
****************************************************************************************/
|
|
static unsigned char UartReceiveByte(unsigned char *data)
|
|
{
|
|
/* check flag to see if a byte was received */
|
|
if (USART_GetFlagStatus(USART2, USART_FLAG_RXNE) == SET)
|
|
{
|
|
/* retrieve and store the newly received byte */
|
|
*data = (unsigned char)USART_ReceiveData(USART2);
|
|
/* all done */
|
|
return 1;
|
|
}
|
|
/* still here to no new byte received */
|
|
return 0;
|
|
} /*** end of UartReceiveByte ***/
|
|
#endif /* BOOT_COM_UART_ENABLE > 0 */
|
|
|
|
|
|
#if (BOOT_COM_CAN_ENABLE > 0)
|
|
/****************************************************************************************
|
|
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
|
|
****************************************************************************************/
|
|
|
|
/****************************************************************************************
|
|
* Type definitions
|
|
****************************************************************************************/
|
|
/** \brief Structure type for grouping CAN bus timing related information. */
|
|
typedef struct t_can_bus_timing
|
|
{
|
|
unsigned char tseg1; /**< CAN time segment 1 */
|
|
unsigned char tseg2; /**< CAN time segment 2 */
|
|
} tCanBusTiming;
|
|
|
|
|
|
/****************************************************************************************
|
|
* Local constant declarations
|
|
****************************************************************************************/
|
|
/** \brief CAN bittiming table for dynamically calculating the bittiming settings.
|
|
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
|
|
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
|
|
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) *
|
|
* 100%. This array contains possible and valid time quanta configurations with
|
|
* a sample point between 68..78%.
|
|
*/
|
|
static const tCanBusTiming canTiming[] =
|
|
{ /* TQ | TSEG1 | TSEG2 | SP */
|
|
/* ------------------------- */
|
|
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
|
|
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
|
|
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
|
|
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
|
|
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
|
|
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
|
|
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
|
|
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
|
|
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
|
|
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
|
|
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
|
|
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
|
|
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
|
|
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
|
|
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
|
|
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
|
|
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
|
|
{ 16, 8 } /* 25 | 16 | 8 | 68% */
|
|
};
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Search algorithm to match the desired baudrate to a possible bus
|
|
** timing configuration.
|
|
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
|
|
** \param prescaler Pointer to where the value for the prescaler will be stored.
|
|
** \param tseg1 Pointer to where the value for TSEG2 will be stored.
|
|
** \param tseg2 Pointer to where the value for TSEG2 will be stored.
|
|
** \return 1 if the CAN bustiming register values were found, 0 otherwise.
|
|
**
|
|
****************************************************************************************/
|
|
static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler,
|
|
unsigned char *tseg1, unsigned char *tseg2)
|
|
{
|
|
unsigned char cnt;
|
|
|
|
/* loop through all possible time quanta configurations to find a match */
|
|
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
|
|
{
|
|
if (((BOOT_CPU_SYSTEM_SPEED_KHZ/2) % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
|
|
{
|
|
/* compute the prescaler that goes with this TQ configuration */
|
|
*prescaler = (BOOT_CPU_SYSTEM_SPEED_KHZ/2)/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1));
|
|
|
|
/* make sure the prescaler is valid */
|
|
if ( (*prescaler > 0) && (*prescaler <= 1024) )
|
|
{
|
|
/* store the bustiming configuration */
|
|
*tseg1 = canTiming[cnt].tseg1;
|
|
*tseg2 = canTiming[cnt].tseg2;
|
|
/* found a good bus timing configuration */
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
/* could not find a good bus timing configuration */
|
|
return 0;
|
|
} /*** end of CanGetSpeedConfig ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Initializes the CAN communication interface.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComCanInit(void)
|
|
{
|
|
GPIO_InitTypeDef GPIO_InitStructure;
|
|
CAN_InitTypeDef CAN_InitStructure;
|
|
CAN_FilterInitTypeDef CAN_FilterInitStructure;
|
|
unsigned short prescaler;
|
|
unsigned char tseg1, tseg2;
|
|
|
|
/* GPIO clock enable */
|
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
|
|
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
|
|
/* Configure CAN pin: RX */
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
/* Configure CAN pin: TX */
|
|
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
|
|
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
|
|
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
|
|
GPIO_Init(GPIOB, &GPIO_InitStructure);
|
|
/* Remap CAN1 pins to PortB */
|
|
GPIO_PinRemapConfig(GPIO_Remap1_CAN1 , ENABLE);
|
|
/* CAN1 Periph clock enable */
|
|
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
|
|
/* CAN register init */
|
|
CAN_DeInit(CAN1);
|
|
CAN_StructInit(&CAN_InitStructure);
|
|
/* obtain the bittiming configuration for this baudrate */
|
|
CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2);
|
|
/* CAN controller init */
|
|
CAN_InitStructure.CAN_TTCM = DISABLE;
|
|
CAN_InitStructure.CAN_ABOM = DISABLE;
|
|
CAN_InitStructure.CAN_AWUM = DISABLE;
|
|
CAN_InitStructure.CAN_NART = DISABLE;
|
|
CAN_InitStructure.CAN_RFLM = DISABLE;
|
|
CAN_InitStructure.CAN_TXFP = DISABLE;
|
|
CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;
|
|
/* CAN Baudrate init */
|
|
CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;
|
|
CAN_InitStructure.CAN_BS1 = tseg1 - 1;
|
|
CAN_InitStructure.CAN_BS2 = tseg2 - 1;
|
|
CAN_InitStructure.CAN_Prescaler = prescaler;
|
|
CAN_Init(CAN1, &CAN_InitStructure);
|
|
/* CAN filter init - receive all messages */
|
|
CAN_FilterInitStructure.CAN_FilterNumber = 0;
|
|
CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask;
|
|
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
|
|
CAN_FilterInitStructure.CAN_FilterIdHigh = 0x0000;
|
|
CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000;
|
|
CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0000;
|
|
CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000;
|
|
CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
|
|
CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
|
|
CAN_FilterInit(&CAN_FilterInitStructure);
|
|
} /*** end of BootCanComInit ***/
|
|
|
|
|
|
/************************************************************************************//**
|
|
** \brief Receives the CONNECT request from the host, which indicates that the
|
|
** bootloader should be activated and, if so, activates it.
|
|
** \return none.
|
|
**
|
|
****************************************************************************************/
|
|
static void BootComCanCheckActivationRequest(void)
|
|
{
|
|
CanRxMsg RxMessage;
|
|
unsigned char canIdMatched = 0;
|
|
|
|
/* check if a new message was received */
|
|
if (CAN_MessagePending(CAN1, CAN_FIFO0) > 0)
|
|
{
|
|
/* receive the message */
|
|
CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
|
|
/* check if the message identifier matches the bootloader reception message */
|
|
if ( (RxMessage.IDE == CAN_Id_Standard) &&
|
|
(RxMessage.StdId == BOOT_COM_CAN_RX_MSG_ID) )
|
|
{
|
|
canIdMatched = 1;
|
|
}
|
|
if ( (RxMessage.IDE == CAN_Id_Extended) &&
|
|
((RxMessage.ExtId | 0x80000000) == BOOT_COM_CAN_RX_MSG_ID) )
|
|
{
|
|
canIdMatched = 1;
|
|
}
|
|
/* is the identifier a match to the bootloader reception message identifier? */
|
|
if (canIdMatched == 1)
|
|
{
|
|
/* check if this was an XCP CONNECT command */
|
|
if ((RxMessage.Data[0] == 0xff) && (RxMessage.Data[1] == 0x00))
|
|
{
|
|
/* connection request received so start the bootloader */
|
|
BootActivate();
|
|
}
|
|
}
|
|
}
|
|
} /*** end of BootComCanCheckActivationRequest ***/
|
|
#endif /* BOOT_COM_CAN_ENABLE > 0 */
|
|
|
|
|
|
/*********************************** end of boot.c *************************************/
|