openblt/Target/Demo/ARMCM3_STM32F1_Olimex_STM32.../Prog/boot.c

433 lines
18 KiB
C

/************************************************************************************//**
* \file Demo/ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio/Prog/boot.c
* \brief Demo program bootloader interface source file.
* \ingroup Prog_ARMCM3_STM32F1_Olimex_STM32P103_TrueStudio
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2018 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "header.h" /* generic header */
/****************************************************************************************
* Function prototypes
****************************************************************************************/
#if (BOOT_COM_UART_ENABLE > 0)
static void BootComUartInit(void);
static void BootComUartCheckActivationRequest(void);
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
static void BootComCanInit(void);
static void BootComCanCheckActivationRequest(void);
#endif
/************************************************************************************//**
** \brief Initializes the communication interface.
** \return none.
**
****************************************************************************************/
void BootComInit(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartInit();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanInit();
#endif
} /*** end of BootComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
void BootComCheckActivationRequest(void)
{
#if (BOOT_COM_UART_ENABLE > 0)
BootComUartCheckActivationRequest();
#endif
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanCheckActivationRequest();
#endif
} /*** end of BootComCheckActivationRequest ***/
/************************************************************************************//**
** \brief Bootloader activation function.
** \return none.
**
****************************************************************************************/
void BootActivate(void)
{
/* perform software reset to activate the bootoader again */
NVIC_SystemReset();
} /*** end of BootActivate ***/
#if (BOOT_COM_UART_ENABLE > 0)
/****************************************************************************************
* U N I V E R S A L A S Y N C H R O N O U S R X T X I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Timeout time for the reception of a CTO packet. The timer is started upon
* reception of the first packet byte.
*/
#define UART_CTO_RX_PACKET_TIMEOUT_MS (100u)
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data);
/************************************************************************************//**
** \brief Initializes the UART communication interface.
** \return none.
**
****************************************************************************************/
static void BootComUartInit(void)
{
GPIO_InitTypeDef GPIO_InitStruct;
USART_InitTypeDef USART_InitStruct;
/* enable UART peripheral clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_USART2, ENABLE);
/* enable GPIO peripheral clock for transmitter and receiver pins */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO, ENABLE);
/* configure USART Tx as alternate function push-pull */
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_2;
GPIO_InitStruct.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStruct);
/* Configure USART Rx as alternate function input floating */
GPIO_InitStruct.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_InitStruct.GPIO_Pin = GPIO_Pin_3;
GPIO_Init(GPIOA, &GPIO_InitStruct);
/* configure UART communcation parameters */
USART_InitStruct.USART_BaudRate = BOOT_COM_UART_BAUDRATE;
USART_InitStruct.USART_WordLength = USART_WordLength_8b;
USART_InitStruct.USART_StopBits = USART_StopBits_1;
USART_InitStruct.USART_Parity = USART_Parity_No;
USART_InitStruct.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStruct.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART2, &USART_InitStruct);
/* enable UART */
USART_Cmd(USART2, ENABLE);
} /*** end of BootComUartInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComUartCheckActivationRequest(void)
{
static unsigned char xcpCtoReqPacket[BOOT_COM_UART_RX_MAX_DATA+1];
static unsigned char xcpCtoRxLength;
static unsigned char xcpCtoRxInProgress = 0;
static unsigned long xcpCtoRxStartTime = 0;
/* start of cto packet received? */
if (xcpCtoRxInProgress == 0)
{
/* store the message length when received */
if (UartReceiveByte(&xcpCtoReqPacket[0]) == 1)
{
/* check that the length has a valid value. it should not be 0 */
if ( (xcpCtoReqPacket[0] > 0) &&
(xcpCtoReqPacket[0] <= BOOT_COM_UART_RX_MAX_DATA) )
{
/* store the start time */
xcpCtoRxStartTime = TimerGet();
/* indicate that a cto packet is being received */
xcpCtoRxInProgress = 1;
/* reset packet data count */
xcpCtoRxLength = 0;
}
}
}
else
{
/* store the next packet byte */
if (UartReceiveByte(&xcpCtoReqPacket[xcpCtoRxLength+1]) == 1)
{
/* increment the packet data count */
xcpCtoRxLength++;
/* check to see if the entire packet was received */
if (xcpCtoRxLength == xcpCtoReqPacket[0])
{
/* done with cto packet reception */
xcpCtoRxInProgress = 0;
/* check if this was an XCP CONNECT command */
if ((xcpCtoReqPacket[1] == 0xff) && (xcpCtoReqPacket[2] == 0x00))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
}
else
{
/* check packet reception timeout */
if (TimerGet() > (xcpCtoRxStartTime + UART_CTO_RX_PACKET_TIMEOUT_MS))
{
/* cancel cto packet reception due to timeout. note that this automatically
* discards the already received packet bytes, allowing the host to retry.
*/
xcpCtoRxInProgress = 0;
}
}
}
} /*** end of BootComUartCheckActivationRequest ***/
/************************************************************************************//**
** \brief Receives a communication interface byte if one is present.
** \param data Pointer to byte where the data is to be stored.
** \return 1 if a byte was received, 0 otherwise.
**
****************************************************************************************/
static unsigned char UartReceiveByte(unsigned char *data)
{
/* check flag to see if a byte was received */
if (USART_GetFlagStatus(USART2, USART_FLAG_RXNE) == SET)
{
/* retrieve and store the newly received byte */
*data = (unsigned char)USART_ReceiveData(USART2);
/* all done */
return 1;
}
/* still here to no new byte received */
return 0;
} /*** end of UartReceiveByte ***/
#endif /* BOOT_COM_UART_ENABLE > 0 */
#if (BOOT_COM_CAN_ENABLE > 0)
/****************************************************************************************
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type for grouping CAN bus timing related information. */
typedef struct t_can_bus_timing
{
unsigned char tseg1; /**< CAN time segment 1 */
unsigned char tseg2; /**< CAN time segment 2 */
} tCanBusTiming;
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief CAN bittiming table for dynamically calculating the bittiming settings.
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) *
* 100%. This array contains possible and valid time quanta configurations with
* a sample point between 68..78%.
*/
static const tCanBusTiming canTiming[] =
{ /* TQ | TSEG1 | TSEG2 | SP */
/* ------------------------- */
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
{ 16, 8 } /* 25 | 16 | 8 | 68% */
};
/************************************************************************************//**
** \brief Search algorithm to match the desired baudrate to a possible bus
** timing configuration.
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
** \param prescaler Pointer to where the value for the prescaler will be stored.
** \param tseg1 Pointer to where the value for TSEG2 will be stored.
** \param tseg2 Pointer to where the value for TSEG2 will be stored.
** \return 1 if the CAN bustiming register values were found, 0 otherwise.
**
****************************************************************************************/
static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler,
unsigned char *tseg1, unsigned char *tseg2)
{
unsigned char cnt;
/* loop through all possible time quanta configurations to find a match */
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
{
if (((BOOT_CPU_SYSTEM_SPEED_KHZ/2) % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
{
/* compute the prescaler that goes with this TQ configuration */
*prescaler = (BOOT_CPU_SYSTEM_SPEED_KHZ/2)/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1));
/* make sure the prescaler is valid */
if ( (*prescaler > 0) && (*prescaler <= 1024) )
{
/* store the bustiming configuration */
*tseg1 = canTiming[cnt].tseg1;
*tseg2 = canTiming[cnt].tseg2;
/* found a good bus timing configuration */
return 1;
}
}
}
/* could not find a good bus timing configuration */
return 0;
} /*** end of CanGetSpeedConfig ***/
/************************************************************************************//**
** \brief Initializes the CAN communication interface.
** \return none.
**
****************************************************************************************/
static void BootComCanInit(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
CAN_InitTypeDef CAN_InitStructure;
CAN_FilterInitTypeDef CAN_FilterInitStructure;
unsigned short prescaler;
unsigned char tseg1, tseg2;
/* GPIO clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
/* Configure CAN pin: RX */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Configure CAN pin: TX */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* Remap CAN1 pins to PortB */
GPIO_PinRemapConfig(GPIO_Remap1_CAN1 , ENABLE);
/* CAN1 Periph clock enable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
/* CAN register init */
CAN_DeInit(CAN1);
CAN_StructInit(&CAN_InitStructure);
/* obtain the bittiming configuration for this baudrate */
CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2);
/* CAN controller init */
CAN_InitStructure.CAN_TTCM = DISABLE;
CAN_InitStructure.CAN_ABOM = DISABLE;
CAN_InitStructure.CAN_AWUM = DISABLE;
CAN_InitStructure.CAN_NART = DISABLE;
CAN_InitStructure.CAN_RFLM = DISABLE;
CAN_InitStructure.CAN_TXFP = DISABLE;
CAN_InitStructure.CAN_Mode = CAN_Mode_Normal;
/* CAN Baudrate init */
CAN_InitStructure.CAN_SJW = CAN_SJW_1tq;
CAN_InitStructure.CAN_BS1 = tseg1 - 1;
CAN_InitStructure.CAN_BS2 = tseg2 - 1;
CAN_InitStructure.CAN_Prescaler = prescaler;
CAN_Init(CAN1, &CAN_InitStructure);
/* CAN filter init - receive all messages */
CAN_FilterInitStructure.CAN_FilterNumber = 0;
CAN_FilterInitStructure.CAN_FilterMode = CAN_FilterMode_IdMask;
CAN_FilterInitStructure.CAN_FilterScale = CAN_FilterScale_32bit;
CAN_FilterInitStructure.CAN_FilterIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdHigh = 0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdLow = 0x0000;
CAN_FilterInitStructure.CAN_FilterFIFOAssignment = 0;
CAN_FilterInitStructure.CAN_FilterActivation = ENABLE;
CAN_FilterInit(&CAN_FilterInitStructure);
} /*** end of BootCanComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComCanCheckActivationRequest(void)
{
CanRxMsg RxMessage;
unsigned char canIdMatched = 0;
/* check if a new message was received */
if (CAN_MessagePending(CAN1, CAN_FIFO0) > 0)
{
/* receive the message */
CAN_Receive(CAN1, CAN_FIFO0, &RxMessage);
/* check if the message identifier matches the bootloader reception message */
if ( (RxMessage.IDE == CAN_Id_Standard) &&
(RxMessage.StdId == BOOT_COM_CAN_RX_MSG_ID) )
{
canIdMatched = 1;
}
if ( (RxMessage.IDE == CAN_Id_Extended) &&
((RxMessage.ExtId | 0x80000000) == BOOT_COM_CAN_RX_MSG_ID) )
{
canIdMatched = 1;
}
/* is the identifier a match to the bootloader reception message identifier? */
if (canIdMatched == 1)
{
/* check if this was an XCP CONNECT command */
if ((RxMessage.Data[0] == 0xff) && (RxMessage.Data[1] == 0x00))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
}
} /*** end of BootComCanCheckActivationRequest ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of boot.c *************************************/