openblt/Target/Source/HCS12/flash_ecc.c

1023 lines
45 KiB
C

/************************************************************************************//**
* \file Source\HCS12\flash_ecc.c
* \brief Bootloader flash driver source file for HCS12 derivatives with error
* correction code in flash memory, such as the HCS12Pxx. This flash memory
* uses a different addressing scheme than other HCS12 derivatives.
* \ingroup Target_HCS12
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2013 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with OpenBLT.
* If not, see <http://www.gnu.org/licenses/>.
*
* A special exception to the GPL is included to allow you to distribute a combined work
* that includes OpenBLT without being obliged to provide the source code for any
* proprietary components. The exception text is included at the bottom of the license
* file <license.html>.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "boot.h" /* bootloader generic header */
/****************************************************************************************
* Macro definitions
****************************************************************************************/
/** \brief Value for an invalid flash sector. */
#define FLASH_INVALID_SECTOR_IDX (0xff)
/** \brief Value for an invalid flash address. */
#define FLASH_INVALID_ADDRESS (0xffffffff)
/** \brief Standard size of a flash block for writing. */
#define FLASH_WRITE_BLOCK_SIZE (512)
/** \brief Total numbers of sectors in array flashLayout[]. */
#define FLASH_TOTAL_SECTORS (sizeof(flashLayout)/sizeof(flashLayout[0]))
#define FLASH_LAST_SECTOR_IDX (FLASH_TOTAL_SECTORS-1)
#define FLASH_ERASE_BLOCK_SIZE (256)
/** \brief Offset into the user program's vector table where the checksum is located. */
#define FLASH_VECTOR_TABLE_CS_OFFSET (0x82)
/** \brief Total size of the vector table, excluding the bootloader specific checksum. */
#define FLASH_VECTOR_TABLE_SIZE (0x80)
/** \brief Start address of the bootloader programmable flash. */
#define FLASH_START_ADDRESS (flashLayout[0].sector_start)
/** \brief End address of the bootloader programmable flash. */
#define FLASH_END_ADDRESS (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - 1)
/** \brief Size of a flash page on the HCS12. */
#define FLASH_PAGE_SIZE (0x4000) /* flash page size in bytes */
/** \brief Physical start address of the HCS12 page window. */
#define FLASH_PAGE_OFFSET (0x8000) /* physical start addr. of pages */
/** \brief PPAGE register to select a specific flash page. */
#define FLASH_PPAGE_REG (*(volatile blt_int8u *)(0x0015))
/** \brief Base address of the flash related control registers. */
#define FLASH_REGS_BASE_ADDRESS (0x0100)
/** \brief Macro for accessing the flash related control registers. */
#define FLASH ((volatile tFlashRegs *)FLASH_REGS_BASE_ADDRESS)
/** \brief Bitmask for flash clock divider bits. */
#define FLASH_FDIV_MASK (0x3f)
/** \brief Invalid value for the flash clock divider bits. */
#define FLASH_FDIV_INVALID (0xff)
/** \brief Maximum number of flash command parameters. */
#define FLASH_CMD_MAX_PARAMS (4)
/** \brief A phrase is an aligned group of 4 16-bit words, so 8 bytes. */
#define FLASH_PHRASE_SIZE (8)
/** \brief Erase sector flash command. */
#define FLASH_ERASE_SECTOR_CMD (0x0A)
/** \brief Program phrase flash command. */
#define FLASH_PROGRAM_PHRASE_CMD (0x06)
/****************************************************************************************
* Register definitions
****************************************************************************************/
/** \brief FSTAT - command complete irg flag bit. */
#define CCIF_BIT (0x80)
/** \brief FCLKDIV - clock divider loaded bit. */
#define FDIVLD_BIT (0x80)
/** \brief FSTAT - flash access error flag bit. */
#define ACCERR_BIT (0x20)
/** \brief FSTAT - flash protection violation flag bit. */
#define FPVIOL_BIT (0x10)
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type for the flash sectors in the flash layout table. */
typedef struct
{
blt_addr sector_start; /**< sector start address */
blt_int32u sector_size; /**< sector size in bytes */
} tFlashSector;
/** \brief Structure type for grouping flash block information.
* \details Programming is done per block of max FLASH_WRITE_BLOCK_SIZE. for this a
* flash block manager is implemented in this driver. this flash block manager
* depends on this flash block info structure. It holds the base address of
* the flash block and the data that should be programmed into the flash
* block. The .base_addr must be a multiple of FLASH_WRITE_BLOCK_SIZE.
*/
typedef struct
{
blt_addr base_addr;
blt_int8u data[FLASH_WRITE_BLOCK_SIZE];
} tFlashBlockInfo;
/** \brief Structure type for the flash control registers. */
typedef volatile struct
{
volatile blt_int8u fclkdiv; /**< flash clock devider register */
volatile blt_int8u fsec; /**< flash security register */
volatile blt_int8u fccobix; /**< flash CCOB index register */
volatile blt_int8u frsv0; /**< flash reserver register */
volatile blt_int8u fcnfg; /**< flash configuration register */
volatile blt_int8u fercnfg; /**< flash error configuration reg. */
volatile blt_int8u fstat; /**< flash status register */
volatile blt_int8u ferstat; /**< flash error status register */
volatile blt_int8u fprot; /**< program flash protection register*/
volatile blt_int8u dfprot; /**< data flash protection register */
volatile blt_int16u fccob; /**< flash command common object reg. */
volatile blt_int8u frsv1; /**< flash reserver register */
volatile blt_int8u frsv2; /**< flash reserver register */
volatile blt_int8u frsv3; /**< flash reserver register */
volatile blt_int8u frsv4; /**< flash reserver register */
volatile blt_int8u fopt; /**< flash option register */
volatile blt_int8u frsv5; /**< flash reserver register */
volatile blt_int8u frsv6; /**< flash reserver register */
volatile blt_int8u frsv7; /**< flash reserver register */
} tFlashRegs;
/** \brief Pointer type to flash command execution function. */
typedef void (*pFlashExeCmdFct)(void);
/** \brief Mapping table for finding the corect flash clock divider prescaler. */
typedef struct
{
blt_int16u sysclock_min; /**< min busclock for this prescaler */
blt_int16u sysclock_max; /**< max busclock for this prescaler */
blt_int8u prescaler; /**< prescaler for this busclock range*/
} tFlashPrescalerSysclockMapping;
/****************************************************************************************
* Function prototypes
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address);
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr);
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len);
static blt_bool FlashWriteBlock(tFlashBlockInfo *block);
static blt_int8u FlashGetGlobalAddrByte(blt_addr addr);
static blt_int8u FlashGetPhysPage(blt_addr addr);
static blt_int16u FlashGetPhysAddr(blt_addr addr);
static void FlashExecuteCommand(void);
static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u params[],
blt_int8u param_count);
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief Array wit the layout of the flash memory.
* \details Also controls what part of the flash memory is reserved for the bootloader.
* If the bootloader size changes, the reserved sectors for the bootloader
* might need adjustment to make sure the bootloader doesn't get overwritten.
* This layout uses global addresses only. Note that the last part is where the
* bootloader also resides and it has been entered as 8 chunks of 2kb.
* This allows flexibility for reserving more/less space for the bootloader in
* case its size changes in the future.
*/
static const tFlashSector flashLayout[] =
{
#if (BOOT_NVM_SIZE_KB > 128)
#error "BOOT_NVM_SIZE_KB > 128 is currently not supported."
#endif
#if (BOOT_NVM_SIZE_KB >= 128)
{ 0x20000, 0x1000 }, /* flash sector - 4kb */
{ 0x21000, 0x1000 }, /* flash sector - 4kb */
{ 0x22000, 0x1000 }, /* flash sector - 4kb */
{ 0x23000, 0x1000 }, /* flash sector - 4kb */
{ 0x24000, 0x1000 }, /* flash sector - 4kb */
{ 0x25000, 0x1000 }, /* flash sector - 4kb */
{ 0x26000, 0x1000 }, /* flash sector - 4kb */
{ 0x27000, 0x1000 }, /* flash sector - 4kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 96)
{ 0x28000, 0x1000 }, /* flash sector - 4kb */
{ 0x29000, 0x1000 }, /* flash sector - 4kb */
{ 0x2A000, 0x1000 }, /* flash sector - 4kb */
{ 0x2B000, 0x1000 }, /* flash sector - 4kb */
{ 0x2C000, 0x1000 }, /* flash sector - 4kb */
{ 0x2D000, 0x1000 }, /* flash sector - 4kb */
{ 0x2E000, 0x1000 }, /* flash sector - 4kb */
{ 0x2F000, 0x1000 }, /* flash sector - 4kb */
#endif
#if (BOOT_NVM_SIZE_KB >= 64)
{ 0x30000, 0x1000 }, /* flash sector - 4kb */
{ 0x31000, 0x1000 }, /* flash sector - 4kb */
{ 0x32000, 0x1000 }, /* flash sector - 4kb */
{ 0x33000, 0x1000 }, /* flash sector - 4kb */
{ 0x34000, 0x1000 }, /* flash sector - 4kb */
{ 0x35000, 0x1000 }, /* flash sector - 4kb */
{ 0x36000, 0x1000 }, /* flash sector - 4kb */
{ 0x37000, 0x1000 }, /* flash sector - 4kb */
#endif
{ 0x38000, 0x1000 }, /* flash sector - 4kb */
{ 0x39000, 0x1000 }, /* flash sector - 4kb */
{ 0x3A000, 0x1000 }, /* flash sector - 4kb */
{ 0x3B000, 0x1000 }, /* flash sector - 4kb */
{ 0x3C000, 0x0800 }, /* flash sector - 2kb */
{ 0x3C800, 0x0800 }, /* flash sector - 2kb */
{ 0x3D000, 0x0800 }, /* flash sector - 2kb */
{ 0x3D800, 0x0800 }, /* flash sector - 2kb */
{ 0x3E000, 0x0800 }, /* flash sector - 2kb */
/* { 0x3E800, 0x0800 }, flash sector - 2kb (reserved for bootloader)*/
/* { 0x3F000, 0x0800 }, flash sector - 2kb (reserved for bootloader)*/
/* { 0x3F800, 0x0800 }, flash sector - 2kb (reserved for bootloader)*/
};
/** \brief Lookup table for determining the flash clock divider setting based on the
* system clock speed. The flash clock must be around 1MHz and is scaled down
* from the system clock using a prescaler value. Note that clock speeds in
* the table are in kHz.
*/
static const tFlashPrescalerSysclockMapping flashFDIVlookup[] =
{
{ 1000, 1600, 0x00 }, /* FDIV[5:0] = prescaler = 0x00 */
{ 1600, 2600, 0x01 }, /* FDIV[5:0] = prescaler = 0x01 */
{ 2600, 3600, 0x02 }, /* FDIV[5:0] = prescaler = 0x02 */
{ 3600, 4600, 0x03 }, /* FDIV[5:0] = prescaler = 0x03 */
{ 4600, 5600, 0x04 }, /* FDIV[5:0] = prescaler = 0x04 */
{ 5600, 6600, 0x05 }, /* FDIV[5:0] = prescaler = 0x05 */
{ 6600, 7600, 0x06 }, /* FDIV[5:0] = prescaler = 0x06 */
{ 7600, 8600, 0x07 }, /* FDIV[5:0] = prescaler = 0x07 */
{ 8600, 9600, 0x08 }, /* FDIV[5:0] = prescaler = 0x08 */
{ 9600, 10600, 0x09 }, /* FDIV[5:0] = prescaler = 0x09 */
{ 10600, 11600, 0x0A }, /* FDIV[5:0] = prescaler = 0x0A */
{ 11600, 12600, 0x0B }, /* FDIV[5:0] = prescaler = 0x0B */
{ 12600, 13600, 0x0C }, /* FDIV[5:0] = prescaler = 0x0C */
{ 13600, 14600, 0x0D }, /* FDIV[5:0] = prescaler = 0x0D */
{ 14600, 15600, 0x0E }, /* FDIV[5:0] = prescaler = 0x0E */
{ 15600, 16600, 0x0F }, /* FDIV[5:0] = prescaler = 0x0F */
{ 16600, 17600, 0x10 }, /* FDIV[5:0] = prescaler = 0x10 */
{ 17600, 18600, 0x11 }, /* FDIV[5:0] = prescaler = 0x11 */
{ 18600, 19600, 0x12 }, /* FDIV[5:0] = prescaler = 0x12 */
{ 19600, 20600, 0x13 }, /* FDIV[5:0] = prescaler = 0x13 */
{ 20600, 21600, 0x14 }, /* FDIV[5:0] = prescaler = 0x14 */
{ 21600, 22600, 0x15 }, /* FDIV[5:0] = prescaler = 0x15 */
{ 22600, 23600, 0x16 }, /* FDIV[5:0] = prescaler = 0x16 */
{ 23600, 24600, 0x17 }, /* FDIV[5:0] = prescaler = 0x17 */
{ 24600, 25600, 0x18 }, /* FDIV[5:0] = prescaler = 0x18 */
{ 25600, 26600, 0x19 }, /* FDIV[5:0] = prescaler = 0x19 */
{ 26600, 27600, 0x1A }, /* FDIV[5:0] = prescaler = 0x1A */
{ 27600, 28600, 0x1B }, /* FDIV[5:0] = prescaler = 0x1B */
{ 28600, 29600, 0x1C }, /* FDIV[5:0] = prescaler = 0x1C */
{ 29600, 30600, 0x1D }, /* FDIV[5:0] = prescaler = 0x1D */
{ 30600, 31600, 0x1E }, /* FDIV[5:0] = prescaler = 0x1E */
{ 31600, 32600, 0x1F } /* FDIV[5:0] = prescaler = 0x1F */
};
/** \brief Array with executable code for performing flash operations.
* \details This array contains the machine code to perform the actual command on the
* flash device, such as program or erase. the code is compiler and location
* independent. This allows us to copy it to a ram buffer and execute the code
* from ram. This way the flash driver can be located in flash memory without
* running into problems when erasing/programming the same flash block that
* contains the flash driver. the source code for the machine code is as
* follows:
* // launch the command
* FLASH->fstat = CCIF_BIT;
* // wait at least 4 cycles (per AN2720)
* asm("nop");
* asm("nop");
* asm("nop");
* asm("nop");
* // wait for command to complete
* while ((FLASH->fstat & CCIF_BIT) != CCIF_BIT);
*/
static const blt_int8u flashExecCmd[] =
{
/* asm("psha"); backup A */
0x36,
/* asm("pshx"); backup X */
0x34,
/* asm("ldx #0x100"); load flash register base in X */
0xce, 0x01, 0x00,
/* asm("leax 6,x"); point X to FSTAT register */
0x1a, 0x06,
/* asm("ldaa #0x80"); load CCIF mask in A */
0x86, 0x80,
/* asm("staa 0,x"); set CCIF bit in FSTAT to launch the command */
0x6a, 0x00,
/* asm("nop"); [4 times] wait at least 4 cycles */
0xa7,0xa7, 0xa7, 0xa7,
/* asm("brclr 0,x,#0x80,*"); wait for command completion: CCIF in FSTAT equals 1 */
0x0f, 0x00, 0x80, 0xfc,
/* asm("pulx"); restore X */
0x30,
/* asm("pula"); restore A */
0x32,
/* asm("rts"); return */
0x3d
};
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief Local variable with information about the flash block that is currently
* being operated on.
* \details The smallest amount of flash that can be programmed is
* FLASH_WRITE_BLOCK_SIZE. A flash block manager is implemented in this driver
* and stores info in this variable. Whenever new data should be flashed, it
* is first added to a RAM buffer, which is part of this variable. Whenever
* the RAM buffer, which has the size of a flash block, is full or data needs
* to be written to a different block, the contents of the RAM buffer are
* programmed to flash. The flash block manager requires some software
* overhead, yet results is faster flash programming because data is first
* harvested, ideally until there is enough to program an entire flash block,
* before the flash device is actually operated on.
*/
static tFlashBlockInfo blockInfo;
/** \brief Local variable with information about the flash boot block.
* \details The first block of the user program holds the vector table, which on the
* STM32 is also the where the checksum is written to. Is it likely that
* the vector table is first flashed and then, at the end of the programming
* sequence, the checksum. This means that this flash block need to be written
* to twice. Normally this is not a problem with flash memory, as long as you
* write the same values to those bytes that are not supposed to be changed
* and the locations where you do write to are still in the erased 0xFF state.
* Unfortunately, writing twice to flash this way, does not work reliably on
* all micros. This is why we need to have an extra block, the bootblock,
* placed under the management of the block manager. This way is it possible
* to implement functionality so that the bootblock is only written to once
* at the end of the programming sequence.
*/
static tFlashBlockInfo bootBlockInfo;
/** \brief RAM buffer where the executable flash operation code is copied to. */
static blt_int8u flashExecCmdRam[(sizeof(flashExecCmd)/sizeof(flashExecCmd[0]))];
/************************************************************************************//**
** \brief Initializes the flash driver.
** \return none.
**
****************************************************************************************/
void FlashInit(void)
{
blt_int8u fdiv_bits = FLASH_FDIV_INVALID;
blt_int8u cnt;
/* init the flash block info structs by setting the address to an invalid address */
blockInfo.base_addr = FLASH_INVALID_ADDRESS;
bootBlockInfo.base_addr = FLASH_INVALID_ADDRESS;
/* try to find correct flash clock divider setting using the lookup table */
for (cnt=0; cnt<(sizeof(flashFDIVlookup)/sizeof(flashFDIVlookup[0])); cnt++)
{
if ((BOOT_CPU_SYSTEM_SPEED_KHZ > flashFDIVlookup[cnt].sysclock_min) &&
(BOOT_CPU_SYSTEM_SPEED_KHZ <= flashFDIVlookup[cnt].sysclock_max))
{
/* matching configuration found in the lookup table so store it */
fdiv_bits = flashFDIVlookup[cnt].prescaler;
/* lookup completed so no need to continue searching */
break;
}
}
/* make sure that a valid configuration was found */
ASSERT_RT(fdiv_bits != FLASH_FDIV_INVALID);
/* wait until all flash commands are finished */
while ((FLASH->fstat & CCIF_BIT) == 0)
{
;
}
/* reset the clock divider bits and then write the new configuration */
FLASH->fclkdiv &= ~FLASH_FDIV_MASK;
FLASH->fclkdiv |= fdiv_bits;
/* double check that the configuration was correctly stored because access to these
* clock divider bits can be locked.
*/
ASSERT_RT((FLASH->fclkdiv & FLASH_FDIV_MASK) == fdiv_bits);
/* double check that the flash module registered the clock configuration otherwise
* subsequent flash commands will fail.
*/
ASSERT_RT((FLASH->fclkdiv & FDIVLD_BIT) != 0);
} /*** end of FlashInit ***/
/************************************************************************************//**
** \brief Writes the data to flash through a flash block manager. Note that this
** function also checks that no data is programmed outside the flash
** memory region, so the bootloader can never be overwritten.
** \param addr Start address.
** \param len Length in bytes.
** \param data Pointer to the data buffer.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWrite(blt_addr addr, blt_int32u len, blt_int8u *data)
{
blt_addr base_addr;
blt_addr last_block_base_addr;
/* make sure the addresses are within the flash device */
if ((addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS))
{
return BLT_FALSE;
}
/* determine the start address of the last block in flash */
last_block_base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_WRITE_BLOCK_SIZE;
/* if this is the bootblock, then let the boot block manager handle it */
base_addr = (addr/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
if (base_addr == last_block_base_addr)
{
/* let the boot block manager handle it */
return FlashAddToBlock(&bootBlockInfo, addr, data, len);
}
/* let the block manager handle it */
return FlashAddToBlock(&blockInfo, addr, data, len);
} /*** end of FlashWrite ***/
/************************************************************************************//**
** \brief Erases the flash memory. Note that this function also checks that no
** data is erased outside the flash memory region, so the bootloader can
** never be erased.
** \param addr Start address.
** \param len Length in bytes.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashErase(blt_addr addr, blt_int32u len)
{
blt_addr erase_base_addr;
blt_int16u nr_of_erase_blocks;
blt_int32u total_erase_len;
blt_int16u block_cnt;
/* determine the base address for the erase operation, by aligning to
* FLASH_ERASE_BLOCK_SIZE.
*/
erase_base_addr = (addr/FLASH_ERASE_BLOCK_SIZE)*FLASH_ERASE_BLOCK_SIZE;
/* make sure the addresses are within the flash device */
if ((erase_base_addr < FLASH_START_ADDRESS) || ((addr+len-1) > FLASH_END_ADDRESS))
{
return BLT_FALSE;
}
/* determine number of bytes to erase from base address */
total_erase_len = len + (addr - erase_base_addr);
/* determine the number of blocks to erase */
nr_of_erase_blocks = (blt_int16u)(total_erase_len / FLASH_ERASE_BLOCK_SIZE);
if ((total_erase_len % FLASH_ERASE_BLOCK_SIZE) > 0)
{
nr_of_erase_blocks++;
}
/* erase all blocks one by one */
for (block_cnt=0; block_cnt<nr_of_erase_blocks; block_cnt++)
{
/* keep the watchdog happy */
CopService();
/* erase the block */
if (FlashOperate(FLASH_ERASE_SECTOR_CMD, erase_base_addr, BLT_NULL, 0) == BLT_FALSE)
{
/* error occurred */
return BLT_FALSE;
}
/* point to the next block's base address */
erase_base_addr += FLASH_ERASE_BLOCK_SIZE;
}
/* erase successful */
return BLT_TRUE;
} /*** end of FlashErase ***/
/************************************************************************************//**
** \brief Writes a checksum of the user program to non-volatile memory. This is
** performed once the entire user program has been programmed. Through
** the checksum, the bootloader can check if the programming session
** was completed, which indicates that a valid user programming is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashWriteChecksum(void)
{
blt_int16u signature_checksum = 0;
blt_int8u byte_counter;
blt_int16u vectab_offset;
blt_addr checksum_address;
/* for the HCS12 target we defined the checksum as the 16-bit Two's complement value
* of the sum of all the 64 interrupt vector addresses, so basically a checksum over
* the contents of the entire user program interrupt vector table.
*
* the bootloader writes this 16-bit checksum value right after the vector table
* of the user program. note that this means one extra dummy entry must be added
* at the end of the user program's vector table to reserve storage space for the
* checksum.
*/
/* first check that the bootblock contains valid data. if not, this means the
* bootblock is not part of the reprogramming this time and therefore no
* new checksum needs to be written
*/
if (bootBlockInfo.base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_TRUE;
}
/* the bootblock contains the data for the last sector in flashLayout. the
* user program vector table and the checkum will be located at the end
* of this block. first determine the offset in the bootblock data to
* reach the start of the vector table.
*/
vectab_offset = FLASH_WRITE_BLOCK_SIZE - FLASH_VECTOR_TABLE_SIZE;
/* compute the checksum. note that the user program's vectors are not yet written
* to flash but are present in the bootblock data structure at this point.
*/
for (byte_counter=0; byte_counter<FLASH_VECTOR_TABLE_SIZE; byte_counter++)
{
signature_checksum += bootBlockInfo.data[vectab_offset + byte_counter];
}
signature_checksum = ~signature_checksum; /* one's complement */
signature_checksum += 1; /* two's complement */
/* write the checksum */
checksum_address = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_VECTOR_TABLE_CS_OFFSET;
return FlashWrite(checksum_address, sizeof(signature_checksum),
(blt_int8u *)&signature_checksum);
} /*** end of FlashWriteChecksum ***/
/************************************************************************************//**
** \brief Verifies the checksum, which indicates that a valid user program is
** present and can be started.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashVerifyChecksum(void)
{
blt_int16u signature_checksum = 0;
blt_int8u byte_counter;
blt_addr checksum_addr_glob;
blt_addr vector_table_addr_glob;
/* get global address of the checksum */
checksum_addr_glob = (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_VECTOR_TABLE_CS_OFFSET);
/* get global address of the vector table start */
vector_table_addr_glob = (flashLayout[FLASH_LAST_SECTOR_IDX].sector_start + \
flashLayout[FLASH_LAST_SECTOR_IDX].sector_size - \
FLASH_VECTOR_TABLE_SIZE);
/* compute the checksum based on how it was written by FlashWriteChecksum() */
for (byte_counter=0; byte_counter<FLASH_VECTOR_TABLE_SIZE; byte_counter++)
{
signature_checksum += FlashGetGlobalAddrByte(vector_table_addr_glob + byte_counter);
}
/* add the 16-bit checksum value */
signature_checksum += (((blt_int16u)FlashGetGlobalAddrByte(checksum_addr_glob) << 8) +
FlashGetGlobalAddrByte(checksum_addr_glob + 1));
/* sum should add up to an unsigned 16-bit value of 0 */
if (signature_checksum == 0)
{
/* checksum okay */
return BLT_TRUE;
}
/* checksum incorrect */
return BLT_FALSE;
} /*** end of FlashVerifyChecksum ***/
/************************************************************************************//**
** \brief Finalizes the flash driver operations. There could still be data in
** the currently active block that needs to be flashed.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
blt_bool FlashDone(void)
{
blt_int8u cnt;
/* check if there is still data waiting to be programmed in the boot block */
if (bootBlockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&bootBlockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if there is still data waiting to be programmed */
if (blockInfo.base_addr != FLASH_INVALID_ADDRESS)
{
if (FlashWriteBlock(&blockInfo) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* flash operations complete, so clear the RAM buffer with operation execution code */
for (cnt=0; cnt<(sizeof(flashExecCmd)/sizeof(flashExecCmd[0])); cnt++)
{
flashExecCmdRam[cnt] = 0;
}
/* still here so all is okay */
return BLT_TRUE;
} /*** end of FlashDone ***/
/************************************************************************************//**
** \brief Copies data currently in flash to the block->data and sets the
** base address.
** \param block Pointer to flash block info structure to operate on.
** \param address Base address of the block data.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashInitBlock(tFlashBlockInfo *block, blt_addr address)
{
blt_int8u oldPage;
/* check address alignment */
if ((address % FLASH_WRITE_BLOCK_SIZE) != 0)
{
return BLT_FALSE;
}
/* make sure that we are initializing a new block and not the same one */
if (block->base_addr == address)
{
/* block already initialized, so nothing to do */
return BLT_TRUE;
}
/* set the base address */
block->base_addr = address;
/* backup originally selected page */
oldPage = FLASH_PPAGE_REG;
/* select correct page */
FLASH_PPAGE_REG = FlashGetPhysPage(address);
/* copy the current data from flash */
CpuMemCopy((blt_addr)block->data, (blt_addr)FlashGetPhysAddr(address), FLASH_WRITE_BLOCK_SIZE);
/* restore originally selected page */
FLASH_PPAGE_REG = oldPage;
return BLT_TRUE;
} /*** end of FlashInitBlock ***/
/************************************************************************************//**
** \brief Switches blocks by programming the current one and initializing the
** next.
** \param block Pointer to flash block info structure to operate on.
** \param base_addr Base address of the next block.
** \return The pointer of the block info struct that is no being used, or a NULL
** pointer in case of error.
**
****************************************************************************************/
static tFlashBlockInfo *FlashSwitchBlock(tFlashBlockInfo *block, blt_addr base_addr)
{
/* check if a switch needs to be made away from the boot block. in this case the boot
* block shouldn't be written yet, because this is done at the end of the programming
* session by FlashDone(), this is right after the checksum was written.
*/
if (block == &bootBlockInfo)
{
/* switch from the boot block to the generic block info structure */
block = &blockInfo;
}
/* check if a switch back into the bootblock is needed. in this case the generic block
* doesn't need to be written here yet.
*/
else if (base_addr == flashLayout[FLASH_LAST_SECTOR_IDX].sector_start)
{
/* switch from the generic block to the boot block info structure */
block = &bootBlockInfo;
base_addr = flashLayout[FLASH_LAST_SECTOR_IDX].sector_start;
}
else
{
/* need to switch to a new block, so program the current one and init the next */
if (FlashWriteBlock(block) == BLT_FALSE)
{
return BLT_NULL;
}
}
/* initialize tne new block when necessary */
if (FlashInitBlock(block, base_addr) == BLT_FALSE)
{
return BLT_NULL;
}
/* still here to all is okay */
return block;
} /*** end of FlashSwitchBlock ***/
/************************************************************************************//**
** \brief Programming is done per block. This function adds data to the block
** that is currently collecting data to be written to flash. If the
** address is outside of the current block, the current block is written
** to flash an a new block is initialized.
** \param block Pointer to flash block info structure to operate on.
** \param address Flash destination address.
** \param data Pointer to the byte array with data.
** \param len Number of bytes to add to the block.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashAddToBlock(tFlashBlockInfo *block, blt_addr address,
blt_int8u *data, blt_int32u len)
{
blt_addr current_base_addr;
blt_int8u *dst;
blt_int8u *src;
/* determine the current base address */
current_base_addr = (address/FLASH_WRITE_BLOCK_SIZE)*FLASH_WRITE_BLOCK_SIZE;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
/* initialize the blockInfo struct for the current block */
if (FlashInitBlock(block, current_base_addr) == BLT_FALSE)
{
return BLT_FALSE;
}
}
/* check if the new data fits in the current block */
if (block->base_addr != current_base_addr)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
}
/* add the data to the current block, but check for block overflow */
dst = &(block->data[address - block->base_addr]);
src = data;
do
{
/* keep the watchdog happy */
CopService();
/* buffer overflow? */
if ((blt_addr)(dst-&(block->data[0])) >= FLASH_WRITE_BLOCK_SIZE)
{
/* need to switch to a new block, so program the current one and init the next */
block = FlashSwitchBlock(block, current_base_addr+FLASH_WRITE_BLOCK_SIZE);
if (block == BLT_NULL)
{
return BLT_FALSE;
}
/* reset destination pointer */
dst = &(block->data[0]);
}
/* write the data to the buffer */
*dst = *src;
/* update pointers */
dst++;
src++;
/* decrement byte counter */
len--;
}
while (len > 0);
/* still here so all is good */
return BLT_TRUE;
} /*** end of FlashAddToBlock ***/
/************************************************************************************//**
** \brief Programs FLASH_WRITE_BLOCK_SIZE bytes to flash from the block->data
** array.
** \param block Pointer to flash block info structure to operate on.
** \return BLT_TRUE if successful, BLT_FALSE otherwise.
**
****************************************************************************************/
static blt_bool FlashWriteBlock(tFlashBlockInfo *block)
{
blt_bool result = BLT_TRUE;
blt_bool cmd_result;
blt_int16u phrase_cnt;
blt_addr phrase_addr;
blt_int8u phrase_data[FLASH_PHRASE_SIZE];
blt_int8u byte_cnt;
/* make sure the blockInfo is not uninitialized */
if (block->base_addr == FLASH_INVALID_ADDRESS)
{
return BLT_FALSE;
}
/* program all phrases in the block one by one */
for (phrase_cnt=0; phrase_cnt<(FLASH_WRITE_BLOCK_SIZE/FLASH_PHRASE_SIZE); phrase_cnt++)
{
/* determine the starting address of the phrase */
phrase_addr = block->base_addr + (phrase_cnt * FLASH_PHRASE_SIZE);
/* copy the phrase data to a buffer */
for (byte_cnt=0; byte_cnt<FLASH_PHRASE_SIZE; byte_cnt++)
{
phrase_data[byte_cnt] = block->data[(phrase_cnt * FLASH_PHRASE_SIZE) + byte_cnt];
}
/* keep the watchdog happy */
CopService();
/* program the phrase to flash */
cmd_result = FlashOperate(FLASH_PROGRAM_PHRASE_CMD, phrase_addr,
(unsigned short *)phrase_data, 4);
if (cmd_result == BLT_FALSE)
{
/* error occurred */
result = BLT_FALSE;
break;
}
/* verify that the written data is actually there */
for (byte_cnt=0; byte_cnt<FLASH_PHRASE_SIZE; byte_cnt++)
{
if (FlashGetGlobalAddrByte(phrase_addr+byte_cnt) != phrase_data[byte_cnt])
{
/* write verification occurred */
result = BLT_FALSE;
break;
}
}
}
/* still here so all is okay */
return result;
} /*** end of FlashWriteBlock ***/
/************************************************************************************//**
** \brief Reads the byte value from the linear address.
** \param addr Linear address.
** \return The byte value located at the linear address.
**
****************************************************************************************/
static blt_int8u FlashGetGlobalAddrByte(blt_addr addr)
{
blt_int8u oldPage;
blt_int8u result;
/* backup originally selected page */
oldPage = FLASH_PPAGE_REG;
/* select correct page */
FLASH_PPAGE_REG = FlashGetPhysPage(addr);
/* read the byte value from the page address */
result = *((blt_int8u *)FlashGetPhysAddr(addr));
/* restore originally selected page */
FLASH_PPAGE_REG = oldPage;
/* return the read byte value */
return result;
} /*** end of FlashGetGlobalAddrByte ***/
/************************************************************************************//**
** \brief Extracts the physical flash page number from a linear address.
** \param addr Linear address.
** \return The page number.
**
****************************************************************************************/
static blt_int8u FlashGetPhysPage(blt_addr addr)
{
return (blt_int8u)(addr / FLASH_PAGE_SIZE);
} /*** end of FlashGetPhysPage ***/
/************************************************************************************//**
** \brief Extracts the physical address on the flash page number from a
** linear address.
** \param addr Linear address.
** \return The physical address.
**
****************************************************************************************/
static blt_int16u FlashGetPhysAddr(blt_addr addr)
{
return (blt_int16u)(((blt_int16u)addr % FLASH_PAGE_SIZE) + FLASH_PAGE_OFFSET);
} /*** end of FlashGetPhysAddr ***/
/************************************************************************************//**
** \brief Executes the command. The actual code for the command execution is
** stored as location independant machine code in array flashExecCmd[].
** The contents of this array are temporarily copied to RAM. This way the
** function can be executed from RAM avoiding problem when try to perform
** a flash operation on the same flash block that this driver is located on.
** \return none.
**
****************************************************************************************/
static void FlashExecuteCommand(void)
{
/* pointer to command execution function */
pFlashExeCmdFct pExecCommandFct;
blt_int8u cnt;
/* copy code for command execution to ram buffer */
for (cnt=0; cnt<(sizeof(flashExecCmd)/sizeof(flashExecCmd[0])); cnt++)
{
flashExecCmdRam[cnt] = flashExecCmd[cnt];
}
/* init the function pointer */
pExecCommandFct = (pFlashExeCmdFct)((void *)flashExecCmdRam);
/* call the command execution function */
pExecCommandFct();
} /*** end of FlashExecuteCommand ***/
/************************************************************************************//**
** \brief Prepares the flash command and executes it.
** \param cmd Command to be launched.
** \param addr Global address to operate on (18-bit).
** \param params Array with additional command parameters.
** \param param_count Number of parameters in the array.
** \return BLT_TRUE if operation was successful, otherwise BLT_FALSE.
**
****************************************************************************************/
static blt_bool FlashOperate(blt_int8u cmd, blt_addr addr, blt_int16u params[], blt_int8u param_count)
{
blt_bool result;
blt_int8u idx;
/* set default result to error */
result = BLT_FALSE;
/* make sure the number of flash parameters is within bounds */
ASSERT_RT(param_count <= FLASH_CMD_MAX_PARAMS);
/* it is not expected that flash commands are being executed now, just make sure this
* is really the case.
*/
if ((FLASH->fstat & CCIF_BIT) == 0)
{
return result;
}
/* clear possibly pending error flags from the previous command */
FLASH->fstat = (FPVIOL_BIT | ACCERR_BIT);
/* write the command and the address to operate on */
FLASH->fccobix = 0;
FLASH->fccob = (cmd << 8) | (((blt_int8u)(addr >> 16)) & 0x03);
FLASH->fccobix = 1;
FLASH->fccob = (blt_int16u)addr;
/* write command paramaters one by one */
for (idx=0; idx<param_count; idx++)
{
/* select the correct command parameter index */
FLASH->fccobix = idx + 2;
/* write the command parameter for this index */
FLASH->fccob = params[idx];
}
/* execute the command */
FlashExecuteCommand();
/* check the results */
if ((FLASH->fstat & (ACCERR_BIT | FPVIOL_BIT)) == 0)
{
/* operation was successful */
result = BLT_TRUE;
}
return result;
} /*** end of FlashOperate ***/
/*********************************** end of flash.c ************************************/