openblt/Target/Demo/ARMCM3_STM32F1_Olimexino_ST.../Prog/boot.c

307 lines
13 KiB
C

/************************************************************************************//**
* \file Demo/ARMCM3_STM32F1_Olimexino_STM32_IAR/Prog/boot.c
* \brief Demo program bootloader interface source file.
* \ingroup Prog_ARMCM3_STM32F1_Olimexino_STM32_IAR
* \internal
*----------------------------------------------------------------------------------------
* C O P Y R I G H T
*----------------------------------------------------------------------------------------
* Copyright (c) 2018 by Feaser http://www.feaser.com All rights reserved
*
*----------------------------------------------------------------------------------------
* L I C E N S E
*----------------------------------------------------------------------------------------
* This file is part of OpenBLT. OpenBLT is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any later
* version.
*
* OpenBLT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
* without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
* PURPOSE. See the GNU General Public License for more details.
*
* You have received a copy of the GNU General Public License along with OpenBLT. It
* should be located in ".\Doc\license.html". If not, contact Feaser to obtain a copy.
*
* \endinternal
****************************************************************************************/
/****************************************************************************************
* Include files
****************************************************************************************/
#include "header.h" /* generic header */
/****************************************************************************************
* Function prototypes
****************************************************************************************/
#if (BOOT_COM_CAN_ENABLE > 0)
static void BootComCanInit(void);
static void BootComCanCheckActivationRequest(void);
#endif
/************************************************************************************//**
** \brief Initializes the communication interface.
** \return none.
**
****************************************************************************************/
void BootComInit(void)
{
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanInit();
#endif
} /*** end of BootComInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
void BootComCheckActivationRequest(void)
{
#if (BOOT_COM_CAN_ENABLE > 0)
BootComCanCheckActivationRequest();
#endif
} /*** end of BootComCheckActivationRequest ***/
/************************************************************************************//**
** \brief Bootloader activation function.
** \return none.
**
****************************************************************************************/
void BootActivate(void)
{
/* perform software reset to activate the bootoader again */
NVIC_SystemReset();
} /*** end of BootActivate ***/
#if (BOOT_COM_CAN_ENABLE > 0)
/****************************************************************************************
* C O N T R O L L E R A R E A N E T W O R K I N T E R F A C E
****************************************************************************************/
/****************************************************************************************
* Type definitions
****************************************************************************************/
/** \brief Structure type for grouping CAN bus timing related information. */
typedef struct t_can_bus_timing
{
unsigned char tseg1; /**< CAN time segment 1 */
unsigned char tseg2; /**< CAN time segment 2 */
} tCanBusTiming;
/****************************************************************************************
* Local constant declarations
****************************************************************************************/
/** \brief CAN bittiming table for dynamically calculating the bittiming settings.
* \details According to the CAN protocol 1 bit-time can be made up of between 8..25
* time quanta (TQ). The total TQ in a bit is SYNC + TSEG1 + TSEG2 with SYNC
* always being 1. The sample point is (SYNC + TSEG1) / (SYNC + TSEG1 + SEG2) *
* 100%. This array contains possible and valid time quanta configurations with
* a sample point between 68..78%.
*/
static const tCanBusTiming canTiming[] =
{ /* TQ | TSEG1 | TSEG2 | SP */
/* ------------------------- */
{ 5, 2 }, /* 8 | 5 | 2 | 75% */
{ 6, 2 }, /* 9 | 6 | 2 | 78% */
{ 6, 3 }, /* 10 | 6 | 3 | 70% */
{ 7, 3 }, /* 11 | 7 | 3 | 73% */
{ 8, 3 }, /* 12 | 8 | 3 | 75% */
{ 9, 3 }, /* 13 | 9 | 3 | 77% */
{ 9, 4 }, /* 14 | 9 | 4 | 71% */
{ 10, 4 }, /* 15 | 10 | 4 | 73% */
{ 11, 4 }, /* 16 | 11 | 4 | 75% */
{ 12, 4 }, /* 17 | 12 | 4 | 76% */
{ 12, 5 }, /* 18 | 12 | 5 | 72% */
{ 13, 5 }, /* 19 | 13 | 5 | 74% */
{ 14, 5 }, /* 20 | 14 | 5 | 75% */
{ 15, 5 }, /* 21 | 15 | 5 | 76% */
{ 15, 6 }, /* 22 | 15 | 6 | 73% */
{ 16, 6 }, /* 23 | 16 | 6 | 74% */
{ 16, 7 }, /* 24 | 16 | 7 | 71% */
{ 16, 8 } /* 25 | 16 | 8 | 68% */
};
/****************************************************************************************
* Local data declarations
****************************************************************************************/
/** \brief CAN handle to be used in API calls. */
static CAN_HandleTypeDef canHandle;
/************************************************************************************//**
** \brief Search algorithm to match the desired baudrate to a possible bus
** timing configuration.
** \param baud The desired baudrate in kbps. Valid values are 10..1000.
** \param prescaler Pointer to where the value for the prescaler will be stored.
** \param tseg1 Pointer to where the value for TSEG2 will be stored.
** \param tseg2 Pointer to where the value for TSEG2 will be stored.
** \return 1 if the CAN bustiming register values were found, 0 otherwise.
**
****************************************************************************************/
static unsigned char CanGetSpeedConfig(unsigned short baud, unsigned short *prescaler,
unsigned char *tseg1, unsigned char *tseg2)
{
unsigned char cnt;
unsigned long canClockFreqkHz;
/* store CAN peripheral clock speed in kHz */
canClockFreqkHz = HAL_RCC_GetPCLK1Freq() / 1000u;
/* loop through all possible time quanta configurations to find a match */
for (cnt=0; cnt < sizeof(canTiming)/sizeof(canTiming[0]); cnt++)
{
if ((canClockFreqkHz % (baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1))) == 0)
{
/* compute the prescaler that goes with this TQ configuration */
*prescaler = canClockFreqkHz/(baud*(canTiming[cnt].tseg1+canTiming[cnt].tseg2+1));
/* make sure the prescaler is valid */
if ( (*prescaler > 0) && (*prescaler <= 1024) )
{
/* store the bustiming configuration */
*tseg1 = canTiming[cnt].tseg1;
*tseg2 = canTiming[cnt].tseg2;
/* found a good bus timing configuration */
return 1;
}
}
}
/* could not find a good bus timing configuration */
return 0;
} /*** end of CanGetSpeedConfig ***/
/************************************************************************************//**
** \brief Initializes the CAN communication interface.
** \return none.
**
****************************************************************************************/
static void BootComCanInit(void)
{
unsigned short prescaler = 0;
unsigned char tseg1 = 0, tseg2 = 0;
CAN_FilterTypeDef filterConfig;
unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID;
unsigned long rxFilterId, rxFilterMask;
/* obtain bittiming configuration information. */
CanGetSpeedConfig(BOOT_COM_CAN_BAUDRATE/1000, &prescaler, &tseg1, &tseg2);
/* set the CAN controller configuration. */
canHandle.Instance = CAN1;
canHandle.Init.TimeTriggeredMode = DISABLE;
canHandle.Init.AutoBusOff = DISABLE;
canHandle.Init.AutoWakeUp = DISABLE;
canHandle.Init.AutoRetransmission = ENABLE;
canHandle.Init.ReceiveFifoLocked = DISABLE;
canHandle.Init.TransmitFifoPriority = DISABLE;
canHandle.Init.Mode = CAN_MODE_NORMAL;
canHandle.Init.SyncJumpWidth = CAN_SJW_1TQ;
canHandle.Init.TimeSeg1 = ((unsigned long)tseg1 - 1) << CAN_BTR_TS1_Pos;
canHandle.Init.TimeSeg2 = ((unsigned long)tseg2 - 1) << CAN_BTR_TS2_Pos;
canHandle.Init.Prescaler = prescaler;
/* initialize the CAN controller. this only fails if the CAN controller hardware is
* faulty. no need to evaluate the return value as there is nothing we can do about
* a faulty CAN controller.
*/
(void)HAL_CAN_Init(&canHandle);
/* determine the reception filter mask and id values such that it only leaves one
* CAN identifier through (BOOT_COM_CAN_RX_MSG_ID).
*/
if ((rxMsgId & 0x80000000) == 0)
{
rxFilterId = rxMsgId << CAN_RI0R_STID_Pos;
rxFilterMask = (CAN_RI0R_STID_Msk) | CAN_RI0R_IDE;
}
else
{
/* negate the ID-type bit */
rxMsgId &= ~0x80000000;
rxFilterId = (rxMsgId << CAN_RI0R_EXID_Pos) | CAN_RI0R_IDE;
rxFilterMask = (CAN_RI0R_EXID_Msk) | CAN_RI0R_IDE;
}
/* configure the reception filter. note that the implementation of this function
* always returns HAL_OK, so no need to evaluate the return value.
*/
filterConfig.FilterBank = 0;
filterConfig.FilterMode = CAN_FILTERMODE_IDMASK;
filterConfig.FilterScale = CAN_FILTERSCALE_32BIT;
filterConfig.FilterIdHigh = (rxFilterId >> 16) & 0x0000FFFFu;
filterConfig.FilterIdLow = rxFilterId & 0x0000FFFFu;
filterConfig.FilterMaskIdHigh = (rxFilterMask >> 16) & 0x0000FFFFu;
filterConfig.FilterMaskIdLow = rxFilterMask & 0x0000FFFFu;
filterConfig.FilterFIFOAssignment = CAN_RX_FIFO0;
filterConfig.FilterActivation = ENABLE;
filterConfig.SlaveStartFilterBank = 14;
(void)HAL_CAN_ConfigFilter(&canHandle, &filterConfig);
/* start the CAN peripheral. no need to evaluate the return value as there is nothing
* we can do about a faulty CAN controller. */
(void)HAL_CAN_Start(&canHandle);
} /*** end of BootComCanInit ***/
/************************************************************************************//**
** \brief Receives the CONNECT request from the host, which indicates that the
** bootloader should be activated and, if so, activates it.
** \return none.
**
****************************************************************************************/
static void BootComCanCheckActivationRequest(void)
{
unsigned long rxMsgId = BOOT_COM_CAN_RX_MSG_ID;
unsigned char packetIdMatches = 0;
CAN_RxHeaderTypeDef rxMsgHeader;
unsigned char rxMsgData[8];
/* poll for received CAN messages that await processing. */
if (HAL_CAN_GetRxMessage(&canHandle, CAN_RX_FIFO0, &rxMsgHeader, rxMsgData) == HAL_OK)
{
/* check if this message has the configured CAN packet identifier. */
if ((rxMsgId & 0x80000000) == 0)
{
/* was an 11-bit CAN message received that matches? */
if ( (rxMsgHeader.StdId == rxMsgId) &&
(rxMsgHeader.IDE == CAN_ID_STD) )
{
/* set flag that a packet with a matching CAN identifier was received. */
packetIdMatches = 1;
}
}
else
{
/* negate the ID-type bit */
rxMsgId &= ~0x80000000;
/* was an 29-bit CAN message received that matches? */
if ( (rxMsgHeader.ExtId == rxMsgId) &&
(rxMsgHeader.IDE == CAN_ID_EXT) )
{
/* set flag that a packet with a matching CAN identifier was received. */
packetIdMatches = 1;
}
}
/* only continue if a packet with a matching CAN identifier was received. */
if (packetIdMatches == 1)
{
/* check if this was an XCP CONNECT command */
if ((rxMsgData[0] == 0xff) && (rxMsgHeader.DLC == 2))
{
/* connection request received so start the bootloader */
BootActivate();
}
}
}
} /*** end of BootComCanCheckActivationRequest ***/
#endif /* BOOT_COM_CAN_ENABLE > 0 */
/*********************************** end of boot.c *************************************/