opendbc/can/parser.cc

323 lines
9.1 KiB
C++

#include <algorithm>
#include <cassert>
#include <cstring>
#include <limits>
#include <unistd.h>
#include <fcntl.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include "cereal/logger/logger.h"
#include "opendbc/can/common.h"
int64_t get_raw_value(const std::vector<uint8_t> &msg, const Signal &sig) {
int64_t ret = 0;
int i = sig.msb / 8;
int bits = sig.size;
while (i >= 0 && i < msg.size() && bits > 0) {
int lsb = (int)(sig.lsb / 8) == i ? sig.lsb : i*8;
int msb = (int)(sig.msb / 8) == i ? sig.msb : (i+1)*8 - 1;
int size = msb - lsb + 1;
uint64_t d = (msg[i] >> (lsb - (i*8))) & ((1ULL << size) - 1);
ret |= d << (bits - size);
bits -= size;
i = sig.is_little_endian ? i-1 : i+1;
}
return ret;
}
bool MessageState::parse(uint64_t sec, const std::vector<uint8_t> &dat) {
for (int i = 0; i < parse_sigs.size(); i++) {
auto &sig = parse_sigs[i];
int64_t tmp = get_raw_value(dat, sig);
if (sig.is_signed) {
tmp -= ((tmp >> (sig.size-1)) & 0x1) ? (1ULL << sig.size) : 0;
}
//DEBUG("parse 0x%X %s -> %ld\n", address, sig.name, tmp);
bool checksum_failed = false;
if (!ignore_checksum) {
if (sig.calc_checksum != nullptr && sig.calc_checksum(address, sig, dat) != tmp) {
checksum_failed = true;
}
}
bool counter_failed = false;
if (!ignore_counter) {
if (sig.type == SignalType::COUNTER) {
counter_failed = !update_counter_generic(tmp, sig.size);
}
}
if (checksum_failed || counter_failed) {
LOGE("0x%X message checks failed, checksum failed %d, counter failed %d", address, checksum_failed, counter_failed);
return false;
}
// TODO: these may get updated if the invalid or checksum gets checked later
vals[i] = tmp * sig.factor + sig.offset;
all_vals[i].push_back(vals[i]);
}
last_seen_nanos = sec;
return true;
}
bool MessageState::update_counter_generic(int64_t v, int cnt_size) {
uint8_t old_counter = counter;
counter = v;
if (((old_counter+1) & ((1 << cnt_size) -1)) != v) {
counter_fail += 1;
if (counter_fail > 1) {
INFO("0x%X COUNTER FAIL #%d -- %d -> %d\n", address, counter_fail, old_counter, (int)v);
}
if (counter_fail >= MAX_BAD_COUNTER) {
return false;
}
} else if (counter_fail > 0) {
counter_fail--;
}
return true;
}
CANParser::CANParser(int abus, const std::string& dbc_name,
const std::vector<MessageParseOptions> &options,
const std::vector<SignalParseOptions> &sigoptions)
: bus(abus), aligned_buf(kj::heapArray<capnp::word>(1024)) {
dbc = dbc_lookup(dbc_name);
assert(dbc);
init_crc_lookup_tables();
bus_timeout_threshold = std::numeric_limits<uint64_t>::max();
for (const auto& op : options) {
MessageState &state = message_states[op.address];
state.address = op.address;
// state.check_frequency = op.check_frequency,
// msg is not valid if a message isn't received for 10 consecutive steps
if (op.check_frequency > 0) {
state.check_threshold = (1000000000ULL / op.check_frequency) * 10;
// bus timeout threshold should be 10x the fastest msg
bus_timeout_threshold = std::min(bus_timeout_threshold, state.check_threshold);
}
const Msg* msg = NULL;
for (const auto& m : dbc->msgs) {
if (m.address == op.address) {
msg = &m;
break;
}
}
if (!msg) {
fprintf(stderr, "CANParser: could not find message 0x%X in DBC %s\n", op.address, dbc_name.c_str());
assert(false);
}
state.size = msg->size;
assert(state.size <= 64); // max signal size is 64 bytes
// track checksums and counters for this message
for (const auto& sig : msg->sigs) {
if (sig.type != SignalType::DEFAULT) {
state.parse_sigs.push_back(sig);
state.vals.push_back(0);
state.all_vals.push_back({});
}
}
// track requested signals for this message
for (const auto& sigop : sigoptions) {
if (sigop.address != op.address) continue;
for (const auto& sig : msg->sigs) {
if (sig.name == sigop.name && sig.type == SignalType::DEFAULT) {
state.parse_sigs.push_back(sig);
state.vals.push_back(0);
state.all_vals.push_back({});
break;
}
}
}
}
}
CANParser::CANParser(int abus, const std::string& dbc_name, bool ignore_checksum, bool ignore_counter)
: bus(abus) {
// Add all messages and signals
dbc = dbc_lookup(dbc_name);
assert(dbc);
init_crc_lookup_tables();
for (const auto& msg : dbc->msgs) {
MessageState state = {
.address = msg.address,
.size = msg.size,
.ignore_checksum = ignore_checksum,
.ignore_counter = ignore_counter,
};
for (const auto& sig : msg.sigs) {
state.parse_sigs.push_back(sig);
state.vals.push_back(0);
state.all_vals.push_back({});
}
message_states[state.address] = state;
}
}
#ifndef DYNAMIC_CAPNP
void CANParser::update_string(const std::string &data, bool sendcan) {
// format for board, make copy due to alignment issues.
const size_t buf_size = (data.length() / sizeof(capnp::word)) + 1;
if (aligned_buf.size() < buf_size) {
aligned_buf = kj::heapArray<capnp::word>(buf_size);
}
memcpy(aligned_buf.begin(), data.data(), data.length());
// extract the messages
capnp::FlatArrayMessageReader cmsg(aligned_buf.slice(0, buf_size));
cereal::Event::Reader event = cmsg.getRoot<cereal::Event>();
if (first_sec == 0) {
first_sec = event.getLogMonoTime();
}
last_sec = event.getLogMonoTime();
auto cans = sendcan ? event.getSendcan() : event.getCan();
UpdateCans(last_sec, cans);
UpdateValid(last_sec);
}
void CANParser::UpdateCans(uint64_t sec, const capnp::List<cereal::CanData>::Reader& cans) {
//DEBUG("got %d messages\n", cans.size());
bool bus_empty = true;
// parse the messages
for (int i = 0; i < cans.size(); i++) {
auto cmsg = cans[i];
if (cmsg.getSrc() != bus) {
// DEBUG("skip %d: wrong bus\n", cmsg.getAddress());
continue;
}
bus_empty = false;
auto state_it = message_states.find(cmsg.getAddress());
if (state_it == message_states.end()) {
// DEBUG("skip %d: not specified\n", cmsg.getAddress());
continue;
}
auto dat = cmsg.getDat();
if (dat.size() > 64) {
DEBUG("got message longer than 64 bytes: 0x%X %zu\n", cmsg.getAddress(), dat.size());
continue;
}
// TODO: this actually triggers for some cars. fix and enable this
//if (dat.size() != state_it->second.size) {
// DEBUG("got message with unexpected length: expected %d, got %zu for %d", state_it->second.size, dat.size(), cmsg.getAddress());
// continue;
//}
std::vector<uint8_t> data(dat.size(), 0);
memcpy(data.data(), dat.begin(), dat.size());
state_it->second.parse(sec, data);
}
// update bus timeout
if (!bus_empty) {
last_nonempty_sec = sec;
}
bus_timeout = (sec - last_nonempty_sec) > bus_timeout_threshold;
}
#endif
void CANParser::UpdateCans(uint64_t sec, const capnp::DynamicStruct::Reader& cmsg) {
// assume message struct is `cereal::CanData` and parse
assert(cmsg.has("address") && cmsg.has("src") && cmsg.has("dat") && cmsg.has("busTime"));
if (cmsg.get("src").as<uint8_t>() != bus) {
DEBUG("skip %d: wrong bus\n", cmsg.get("address").as<uint32_t>());
return;
}
auto state_it = message_states.find(cmsg.get("address").as<uint32_t>());
if (state_it == message_states.end()) {
DEBUG("skip %d: not specified\n", cmsg.get("address").as<uint32_t>());
return;
}
auto dat = cmsg.get("dat").as<capnp::Data>();
if (dat.size() > 64) return; // shouldn't ever happen
std::vector<uint8_t> data(dat.size(), 0);
memcpy(data.data(), dat.begin(), dat.size());
state_it->second.parse(sec, data);
}
void CANParser::UpdateValid(uint64_t sec) {
const bool show_missing = (last_sec - first_sec) > 8e9;
bool _valid = true;
bool _counters_valid = true;
for (const auto& kv : message_states) {
const auto& state = kv.second;
if (state.counter_fail >= MAX_BAD_COUNTER) {
_counters_valid = false;
}
const bool missing = state.last_seen_nanos == 0;
const bool timed_out = (sec - state.last_seen_nanos) > state.check_threshold;
if (state.check_threshold > 0 && (missing || timed_out)) {
if (show_missing && !bus_timeout) {
if (missing) {
LOGE("0x%X NOT SEEN", state.address);
} else if (timed_out) {
LOGE("0x%X TIMED OUT", state.address);
}
}
_valid = false;
}
}
can_invalid_cnt = _valid ? 0 : (can_invalid_cnt + 1);
can_valid = (can_invalid_cnt < CAN_INVALID_CNT) && _counters_valid;
}
std::vector<SignalValue> CANParser::query_latest() {
std::vector<SignalValue> ret;
for (auto& kv : message_states) {
auto& state = kv.second;
if (last_sec != 0 && state.last_seen_nanos != last_sec) continue;
for (int i = 0; i < state.parse_sigs.size(); i++) {
const Signal &sig = state.parse_sigs[i];
ret.push_back((SignalValue){
.address = state.address,
.name = sig.name,
.value = state.vals[i],
.all_values = state.all_vals[i],
});
state.all_vals[i].clear();
}
}
return ret;
}