rusefi-1/firmware/hw_layer/sensors/CJ125.cpp

628 lines
19 KiB
C++
Raw Normal View History

2016-06-24 16:02:45 -07:00
/*
* @file CJ125.cpp
*
* @date: Jun 24, 2016
2018-01-20 17:55:31 -08:00
* @author Andrey Belomutskiy, (c) 2012-2018
2016-06-24 16:02:45 -07:00
*
*/
2016-07-17 00:01:48 -07:00
#include "engine.h"
2016-07-16 23:03:46 -07:00
#include "CJ125.h"
2016-07-17 00:01:48 -07:00
#include "pwm_generator.h"
#include "rpm_calculator.h"
2016-07-17 00:01:48 -07:00
#include "pid.h"
2016-07-25 20:03:45 -07:00
#if EFI_CJ125 || defined(__DOXYGEN__)
2018-01-29 11:38:58 -08:00
// looks like 3v range should be enough, divider not needed
#define EFI_CJ125_DIRECTLY_CONNECTED_UR TRUE
2016-08-01 19:04:24 -07:00
#include "pin_repository.h"
#include "hardware.h"
#include "adc_inputs.h"
#include "backup_ram.h"
#define CJ125_DEBUG
//#define CJ125_DEBUG_SPI
2016-08-01 19:04:24 -07:00
2016-07-17 00:01:48 -07:00
EXTERN_ENGINE;
#if ! EFI_UNIT_TEST || defined(__DOXYGEN__)
extern TunerStudioOutputChannels tsOutputChannels;
#endif
static SimplePwm wboHeaterControl;
static OutputPin wboHeaterPin;
2016-07-17 00:01:48 -07:00
static OutputPin cj125Cs;
2016-07-26 19:01:50 -07:00
static Logging *logger;
static unsigned char tx_buff[2];
2016-07-30 19:02:52 -07:00
static unsigned char rx_buff[1];
static pid_s heaterPidConfig;
static Pid heaterPid(&heaterPidConfig);
static float heaterDuty = 0.0f;
2016-07-25 19:01:42 -07:00
static THD_WORKING_AREA(cjThreadStack, UTILITY_THREAD_STACK_SIZE);
2016-07-17 00:01:48 -07:00
static SPIDriver *driver;
static SPIConfig cj125spicfg = { NULL,
/* HW dependent part.*/
NULL, 0, SPI_CR1_MSTR | SPI_CR1_CPHA | SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_BR_2 };
// Used by CJ125 driver state machine
static volatile cj125_state_e state = CJ125_IDLE;
// Chip diagnostics register contents
static volatile int diag = 0;
// Last Error code
static volatile cj125_error_e errorCode = CJ125_ERROR_NONE;
// Current values
static volatile float vUa = 0.0f, vUr = 0.0f;
// Calibration values
static volatile float vUaCal = 0.0f, vUrCal = 0.0f;
static volatile int lastSlowAdcCounter = 0;
static volatile cj125_mode_e mode = CJ125_MODE_NONE;
// Amplification coefficient, needed by cjGetAfr()
static volatile float amplCoeff = 0.0f;
// Calculated Lambda-value
static volatile float lambda = 1.0f;
// LSU conversion tables. See cj125_sensor_type_e
// For LSU4.2, See http://www.bosch-motorsport.com/media/catalog_resources/Lambda_Sensor_LSU_42_Datasheet_51_en_2779111435pdf.pdf
// See LSU4.9, See http://www.bosch-motorsport.com/media/catalog_resources/Lambda_Sensor_LSU_49_Datasheet_51_en_2779147659pdf.pdf
2018-06-23 13:24:59 -07:00
static const int CJ125_LSU_CURVE_SIZE = 25;
// This is a number of bins for each sensor type (should be < CJ125_LSU_CURVE_SIZE)
static const float cjLSUTableSize[2] = {
2018-06-23 13:24:59 -07:00
9, 24,
};
// Pump current, mA
static const float cjLSUBins[2][CJ125_LSU_CURVE_SIZE] = { {
// LSU 4.2
-1.85f, -1.08f, -0.76f, -0.47f, 0.0f, 0.34f, 0.68f, 0.95f, 1.4f }, {
// LSU 4.9
2018-06-23 13:24:59 -07:00
-2.0f, -1.602f, -1.243f, -0.927f, -0.8f, -0.652f, -0.405f, -0.183f, -0.106f, -0.04f, 0, 0.015f, 0.097f, 0.193f, 0.250f, 0.329f, 0.671f, 0.938f, 1.150f, 1.385f, 1.700f, 2.000f, 2.150f, 2.250f },
};
// Lambda value
static const float cjLSULambda[2][CJ125_LSU_CURVE_SIZE] = { {
// LSU 4.2
0.7f, 0.8f, 0.85f, 0.9f, 1.009f, 1.18f, 1.43f, 1.7f, 2.42f }, {
// LSU 4.9
2018-06-23 13:24:59 -07:00
0.65f, 0.7f, 0.75f, 0.8f, 0.822f, 0.85f, 0.9f, 0.95f, 0.97f, 0.99f, 1.003f, 1.01f, 1.05f, 1.1f, 1.132f, 1.179f, 1.429f, 1.701f, 1.990f, 2.434f, 3.413f, 5.391f, 7.506f, 10.119f },
};
static int cjReadRegister(unsigned char regAddr) {
spiSelect(driver);
tx_buff[0] = regAddr;
spiSend(driver, 1, tx_buff);
// safety?
chThdSleepMilliseconds(10);
rx_buff[0] = 0;
spiReceive(driver, 1, rx_buff);
spiUnselect(driver);
2016-07-25 19:01:42 -07:00
#ifdef CJ125_DEBUG_SPI
scheduleMsg(logger, "cjReadRegister: addr=%d answer=%d", regAddr, rx_buff[0]);
#endif
return rx_buff[0];
}
2016-07-25 19:01:42 -07:00
static void cjWriteRegister(unsigned char regAddr, unsigned char regValue) {
#ifdef CJ125_DEBUG_SPI
scheduleMsg(logger, "cjWriteRegister: addr=%d value=%d", regAddr, regValue);
#endif
spiSelect(driver);
tx_buff[0] = regAddr;
tx_buff[1] = regValue;
spiSend(driver, 2, tx_buff);
spiUnselect(driver);
}
2016-07-25 19:01:42 -07:00
static float getUr() {
if (CONFIG(cj125ur) != EFI_ADC_NONE) {
#ifdef EFI_CJ125_DIRECTLY_CONNECTED_UR
// in case of directly connected Ur signal from CJ125 to the ADC pin of MCU
return getVoltage("cj125ur", CONFIG(cj125ur));
#else
// if a standard voltage division scheme with OpAmp is used
return getVoltageDivided("cj125ur", CONFIG(cj125ur));
#endif
}
return 0.0f;
2016-07-25 19:01:42 -07:00
}
static float getUa() {
2018-06-17 12:07:42 -07:00
if (CONFIG(cj125ua) != EFI_ADC_NONE) {
if (engineConfiguration->cj125isUaDivided) {
return getVoltageDivided("cj125ua", CONFIG(cj125ua));
} else {
return getVoltage("cj125ua", CONFIG(cj125ua));
}
}
return 0.0f;
}
2016-07-25 19:01:42 -07:00
static float getVoltageFrom16bit(uint32_t stored) {
return ((float)stored) / CJ125_VOLTAGE_TO_16BIT_FACTOR;
}
2016-07-30 19:02:52 -07:00
static uint32_t get16bitFromVoltage(float v) {
return (uint32_t)(v * CJ125_VOLTAGE_TO_16BIT_FACTOR);
}
2016-07-30 19:02:52 -07:00
static void cjPrintData(void) {
#ifdef CJ125_DEBUG
scheduleMsg(logger, "cj125: state=%d diag=0x%x (vUa=%.3f vUr=%.3f) (vUaCal=%.3f vUrCal=%.3f)", state, diag, vUa, vUr, vUaCal, vUrCal);
#endif
}
2016-07-30 19:02:52 -07:00
static void cjPrintErrorCode(cj125_error_e errCode) {
const char *errString = nullptr;
switch (errCode) {
case CJ125_ERROR_HEATER_MALFUNCTION:
errString = "Heater malfunction (Too long preheat)";
break;
case CJ125_ERROR_OVERHEAT:
errString = "Sensor overheating";
break;
case CJ125_ERROR_NONE:
errString = "N/A";
break;
2018-07-22 11:17:51 -07:00
case CJ125_ERROR_WRONG_IDENT:
errString = "W_IDENT";
break;
case CJ125_ERROR_WRONG_INIT:
errString = "W_INIT";
break;
}
scheduleMsg(logger, "cj125 ERROR: %s.", errString);
}
2016-07-30 19:02:52 -07:00
static void cjSetMode(cj125_mode_e m) {
if (mode == m)
return;
switch (m) {
case CJ125_MODE_NORMAL_8:
cjWriteRegister(INIT_REG1_WR, CJ125_INIT1_NORMAL_8);
amplCoeff = 1.0f / 8.0f;
break;
case CJ125_MODE_NORMAL_17:
cjWriteRegister(INIT_REG1_WR, CJ125_INIT1_NORMAL_17);
amplCoeff = 1.0f / 17.0f;
break;
case CJ125_MODE_CALIBRATION:
cjWriteRegister(INIT_REG1_WR, CJ125_INIT1_CALBRT);
amplCoeff = 0.0f;
break;
default:
;
}
mode = m;
}
2016-07-30 19:02:52 -07:00
static void cjIdentify(void) {
// read Ident register
int ident = cjReadRegister(IDENT_REG_RD) & CJ125_IDENT_MASK;
// set initial registers
cjWriteRegister(INIT_REG1_WR, CJ125_INIT1_NORMAL_17);
cjWriteRegister(INIT_REG2_WR, CJ125_INIT2_DIAG);
// check if regs are ok
int init1 = cjReadRegister(INIT_REG1_RD);
int init2 = cjReadRegister(INIT_REG2_RD);
diag = cjReadRegister(DIAG_REG_RD);
scheduleMsg(logger, "cj125: Check ident=0x%x diag=0x%x init1=0x%x init2=0x%x", ident, diag, init1, init2);
if (ident != CJ125_IDENT) {
scheduleMsg(logger, "cj125: Error! Wrong ident! Cannot communicate with CJ125!");
}
if (init1 != CJ125_INIT1_NORMAL_17 || init2 != CJ125_INIT2_DIAG) {
scheduleMsg(logger, "cj125: Error! Cannot set init registers! Cannot communicate with CJ125!");
}
#if 0
if (diag != CJ125_DIAG_NORM) {
scheduleMsg(logger, "cj125: Diag error!");
}
#endif
}
2016-07-30 19:02:52 -07:00
static void cjUpdateAnalogValues(void) {
waitForSlowAdc(lastSlowAdcCounter);
vUr = getUr();
vUa = getUa();
lastSlowAdcCounter = getSlowAdcCounter();
2016-07-25 19:01:42 -07:00
}
2016-06-24 16:02:45 -07:00
static void cjCalibrate(void) {
cjIdentify();
2016-07-17 00:01:48 -07:00
scheduleMsg(logger, "cj125: Starting calibration...");
cjSetMode(CJ125_MODE_CALIBRATION);
int init1 = cjReadRegister(INIT_REG1_RD);
// check if our command has been accepted
if (init1 != CJ125_INIT1_CALBRT) {
scheduleMsg(logger, "cj125: Calibration error (init1=0x%02x)! Failed!", init1);
cjSetMode(CJ125_MODE_NORMAL_17);
2016-07-17 00:01:48 -07:00
return;
}
// wait for the start of the calibration
chThdSleepMilliseconds(CJ125_CALIBRATION_DELAY);
vUaCal = 0.0f;
vUrCal = 0.0f;
// wait for some more ADC samples
for (int i = 0; i < CJ125_CALIBRATE_NUM_SAMPLES; i++) {
cjUpdateAnalogValues();
cjPrintData();
if (engineConfiguration->debugMode == DBG_CJ125) {
cjPostState(&tsOutputChannels);
}
vUaCal += vUa;
vUrCal += vUr;
}
// find average
vUaCal /= (float)CJ125_CALIBRATE_NUM_SAMPLES;
vUrCal /= (float)CJ125_CALIBRATE_NUM_SAMPLES;
// restore normal mode
cjSetMode(CJ125_MODE_NORMAL_17);
chThdSleepMilliseconds(CJ125_CALIBRATION_DELAY);
// check if everything is ok
diag = cjReadRegister(DIAG_REG_RD);
cjUpdateAnalogValues();
cjPrintData();
// store new calibration data
uint32_t storedLambda = get16bitFromVoltage(vUaCal);
uint32_t storedHeater = get16bitFromVoltage(vUrCal);
scheduleMsg(logger, "cj125: Done! Saving calibration data (%d %d).", storedLambda, storedHeater);
backupRamSave(BACKUP_CJ125_CALIBRATION_LAMBDA, storedLambda);
backupRamSave(BACKUP_CJ125_CALIBRATION_HEATER, storedHeater);
state = CJ125_IDLE;
}
static void cjStart(void) {
if (!boardConfiguration->isCJ125Enabled) {
scheduleMsg(logger, "cj125 is disabled.");
return;
}
cjIdentify();
// Load calibration values
uint32_t storedLambda = backupRamLoad(BACKUP_CJ125_CALIBRATION_LAMBDA);
uint32_t storedHeater = backupRamLoad(BACKUP_CJ125_CALIBRATION_HEATER);
// if no calibration, try to calibrate now and store new values
if (storedLambda == 0 || storedHeater == 0) {
cjCalibrate();
} else {
scheduleMsg(logger, "cj125: Loading stored calibration data (%d %d)", storedLambda, storedHeater);
vUaCal = getVoltageFrom16bit(storedLambda);
vUrCal = getVoltageFrom16bit(storedHeater);
// Start normal measurement mode
cjSetMode(CJ125_MODE_NORMAL_17);
}
cjPrintData();
lastSlowAdcCounter = getSlowAdcCounter();
}
static void cjSetHeater(float value) {
// limit duty cycle for sensor safety
float maxDuty = (engine->sensors.vBatt > CJ125_HEATER_LIMITING_VOLTAGE) ? CJ125_HEATER_LIMITING_RATE : 1.0f;
heaterDuty = (value < CJ125_HEATER_MIN_DUTY) ? 0.0f : minF(maxF(value, 0.0f), maxDuty);
#ifdef CJ125_DEBUG
scheduleMsg(logger, "cjSetHeater: %.2f", heaterDuty);
#endif
// a little trick to disable PWM if needed.
// todo: this should be moved to wboHeaterControl.setPwmDutyCycle()
wboHeaterControl.setFrequency(heaterDuty == 0.0f ? NAN : CJ125_HEATER_PWM_FREQ);
wboHeaterControl.setSimplePwmDutyCycle(heaterDuty);
// This fixes pwm sticking to the last pin state
if (heaterDuty == 0.0f)
wboHeaterPin.setValue(false);
}
static void cjSetIdleHeater(void) {
// small preheat for faster start & moisture anti-shock therapy for the sensor
cjSetHeater(CJ125_HEATER_IDLE_RATE);
}
2016-07-17 00:01:48 -07:00
static void cjStartHeaterControl(void) {
if (boardConfiguration->wboHeaterPin != GPIO_UNASSIGNED) {
scheduleMsg(logger, "cj125: Starting heater control");
// todo: use custom pin state method, turn pin off while not running
startSimplePwmExt(&wboHeaterControl, "wboHeaterPin", boardConfiguration->wboHeaterPin,
&wboHeaterPin, CJ125_HEATER_PWM_FREQ, 0.0f, applyPinState);
cjSetIdleHeater();
}
}
static void cjSetError(cj125_error_e errCode) {
errorCode = errCode;
state = CJ125_ERROR;
cjPrintErrorCode(errorCode);
// This is for safety:
scheduleMsg(logger, "cj125: Controller Shutdown!");
cjSetHeater(0);
// Software-reset of CJ125
cjWriteRegister(INIT_REG2_WR, CJ125_INIT2_RESET);
}
static bool cjIsWorkingState(void) {
return state != CJ125_ERROR && state != CJ125_INIT && state != CJ125_IDLE;
}
static void cjInitPid(void) {
// todo: these values are valid only for LSU 4.2
heaterPidConfig.pFactor = CJ125_PID_LSU42_P;
heaterPidConfig.iFactor = CJ125_PID_LSU42_I;
heaterPidConfig.dFactor = 0.0f;
heaterPidConfig.minValue = 0;
heaterPidConfig.maxValue = 1;
heaterPidConfig.offset = 0;
// todo: period?
heaterPidConfig.period = 1.0f;
heaterPid.reset();
}
2018-06-17 12:07:42 -07:00
// engineConfiguration->spi2SckMode = PAL_STM32_OTYPE_OPENDRAIN; // 4
// engineConfiguration->spi2MosiMode = PAL_STM32_OTYPE_OPENDRAIN; // 4
// engineConfiguration->spi2MisoMode = PAL_STM32_PUDR_PULLUP; // 32
// boardConfiguration->cj125CsPin = GPIOA_15;
// engineConfiguration->cj125CsPinMode = OM_OPENDRAIN;
void cj125defaultPinout() {
2018-06-17 16:14:46 -07:00
engineConfiguration->cj125ua = EFI_ADC_13; // PC3
engineConfiguration->cj125ur = EFI_ADC_4; // PA4
2018-06-17 12:07:42 -07:00
boardConfiguration->wboHeaterPin = GPIOC_13;
boardConfiguration->isCJ125Enabled = false;
boardConfiguration->spi2mosiPin = GPIOB_15;
boardConfiguration->spi2misoPin = GPIOB_14;
boardConfiguration->spi2sckPin = GPIOB_13;
boardConfiguration->cj125CsPin = GPIOB_0;
boardConfiguration->isCJ125Enabled = true;
boardConfiguration->is_enabled_spi_2 = true;
}
static void cjStartSpi(void) {
2017-07-28 11:27:37 -07:00
cj125spicfg.ssport = getHwPort("cj125", boardConfiguration->cj125CsPin);
cj125spicfg.sspad = getHwPin("cj125", boardConfiguration->cj125CsPin);
2016-07-17 00:01:48 -07:00
driver = getSpiDevice(engineConfiguration->cj125SpiDevice);
2017-04-21 15:11:36 -07:00
cj125Cs.initPin("cj125 CS", boardConfiguration->cj125CsPin,
2016-07-17 00:01:48 -07:00
&engineConfiguration->cj125CsPinMode);
scheduleMsg(logger, "cj125: Starting SPI driver");
spiStart(driver, &cj125spicfg);
}
2016-07-17 00:01:48 -07:00
static msg_t cjThread(void)
{
chRegSetThreadName("cj125");
2016-07-17 00:01:48 -07:00
chThdSleepMilliseconds(500);
efitick_t startHeatingNt = 0;
efitick_t prevNt = getTimeNowNt();
while(1) {
efitick_t nowNt = getTimeNowNt();
bool isStopped = engine->rpmCalculator.isStopped(PASS_ENGINE_PARAMETER_SIGNATURE);
cjUpdateAnalogValues();
// If the controller is disabled
if (state == CJ125_IDLE || state == CJ125_ERROR) {
chThdSleepMilliseconds(CJ125_IDLE_TICK_DELAY);
continue;
}
if (state == CJ125_CALIBRATION) {
cjCalibrate();
// Start normal operation
state = CJ125_INIT;
cjSetMode(CJ125_MODE_NORMAL_17);
}
diag = cjReadRegister(DIAG_REG_RD);
// check heater state
if (vUr > CJ125_UR_PREHEAT_THR || heaterDuty < CJ125_PREHEAT_MIN_DUTY) {
// Check if RPM>0 and it's time to start pre-heating
if (state == CJ125_INIT && !isStopped) {
// start preheating
state = CJ125_PREHEAT;
startHeatingNt = prevNt = getTimeNowNt();
cjSetMode(CJ125_MODE_NORMAL_17);
}
} else if (vUr > CJ125_UR_GOOD_THR) {
state = CJ125_HEAT_UP;
} else if (vUr < CJ125_UR_OVERHEAT_THR) {
state = CJ125_OVERHEAT;
} else {
// This indicates that the heater temperature is optimal for UA measurement
state = CJ125_READY;
}
if (isStopped && cjIsWorkingState()) {
state = CJ125_INIT;
cjSetIdleHeater();
}
#if 0
// Change amplification if AFR gets lean/rich for better accuracy
cjSetMode(lambda > 1.0f ? CJ125_MODE_NORMAL_17 : CJ125_MODE_NORMAL_8);
#endif
switch (state) {
case CJ125_PREHEAT:
// use constant-speed startup heat-up
if (nowNt - prevNt >= CJ125_HEATER_PREHEAT_PERIOD) {
float periodSecs = (float)(nowNt - prevNt) / US2NT(US_PER_SECOND_LL);
// maintain speed at ~0.4V/sec
float preheatDuty = heaterDuty + periodSecs * CJ125_HEATER_PREHEAT_RATE;
cjSetHeater(preheatDuty);
// If we are heating too long, and there's still no result, then something is wrong...
if (nowNt - startHeatingNt > US2NT(US_PER_SECOND_LL) * CJ125_PREHEAT_TIMEOUT) {
cjSetError(CJ125_ERROR_HEATER_MALFUNCTION);
}
cjPrintData();
prevNt = nowNt;
}
break;
case CJ125_HEAT_UP:
case CJ125_READY:
// use PID for normal heater control
if (nowNt - prevNt >= CJ125_HEATER_CONTROL_PERIOD) {
2018-05-27 17:47:40 -07:00
/* PID doesn't care about the target or the input, it knows only the
* error value as the difference of (target - input). and if we swap them we'll just get a sign inversion. If target=vUrCal, and input=vUr, then error=vUrCal-vUr, i.e. if vUr<vUrCal then the error will cause the heater to increase it's duty cycle. But it's not exactly what we want! Lesser vUr means HOTTER cell. That's why we even have this safety check for overheating: (vUr < CJ125_UR_OVERHEAT_THR)...
* So the simple trick is to inverse the error by swapping the target and input values.
*/
float duty = heaterPid.getValue(vUr, vUrCal);
heaterPid.showPidStatus(logger, "cj");
cjSetHeater(duty);
cjPrintData();
prevNt = nowNt;
}
break;
case CJ125_OVERHEAT:
if (nowNt - prevNt >= CJ125_HEATER_OVERHEAT_PERIOD) {
cjSetError(CJ125_ERROR_OVERHEAT);
prevNt = nowNt;
}
default:
;
}
chThdSleepMilliseconds(CJ125_TICK_DELAY);
2016-07-17 00:01:48 -07:00
}
return -1;
}
2016-07-25 19:01:42 -07:00
static bool cjCheckConfig(void) {
if (!boardConfiguration->isCJ125Enabled) {
scheduleMsg(logger, "cj125 is disabled. Failed!");
return false;
}
return true;
}
2016-07-26 19:01:50 -07:00
static void cjStartCalibration(void) {
if (!cjCheckConfig())
return;
if (state != CJ125_IDLE) {
// todo: change this later for the normal thread operation (auto pre-heating)
scheduleMsg(logger, "cj125: Cannot start calibration. Please restart the board and make sure that your sensor is not heating");
return;
}
state = CJ125_CALIBRATION;
}
2016-07-25 19:01:42 -07:00
static void cjStartTest(void) {
if (!cjCheckConfig())
return;
state = CJ125_INIT;
}
2016-07-25 19:01:42 -07:00
#ifdef CJ125_DEBUG
static void cjSetInit1(int v) {
cjWriteRegister(INIT_REG1_WR, v & 0xff);
v = cjReadRegister(INIT_REG1_RD);
scheduleMsg(logger, "cj125 INIT_REG1=0x%02x.", v);
2016-06-24 16:02:45 -07:00
}
static void cjSetInit2(int v) {
cjWriteRegister(INIT_REG2_WR, v & 0xff);
v = cjReadRegister(INIT_REG2_RD);
scheduleMsg(logger, "cj125 INIT_REG2=0x%02x.", v);
}
#endif /* CJ125_DEBUG */
float cjGetAfr(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
// todo: make configurable sensor LSU type
cj125_sensor_type_e sensorType = CJ125_LSU_42;
// See CJ125 datasheet, page 6
float pumpCurrent = (vUa - vUaCal) * amplCoeff * (CJ125_PUMP_CURRENT_FACTOR / CJ125_PUMP_SHUNT_RESISTOR);
lambda = interpolate2d("cj125Lsu", pumpCurrent, (float *)cjLSUBins[sensorType], (float *)cjLSULambda[sensorType], cjLSUTableSize[sensorType]);
// todo: make configurable stoich ratio
return lambda * CJ125_STOICH_RATIO;
}
bool cjHasAfrSensor(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (!boardConfiguration->isCJ125Enabled)
return false;
// check if controller is functioning
if (!cjIsWorkingState())
return false;
// check if amplification is turned on
if (amplCoeff == 0.0f)
return false;
// check if UA calibration value is valid
if (vUaCal < CJ125_UACAL_MIN || vUaCal > CJ125_UACAL_MAX)
return false;
return true;
}
2018-06-17 16:14:46 -07:00
// used by DBG_CJ125
void cjPostState(TunerStudioOutputChannels *tsOutputChannels) {
tsOutputChannels->debugFloatField1 = heaterDuty;
tsOutputChannels->debugFloatField2 = heaterPid.getIntegration();
tsOutputChannels->debugFloatField3 = heaterPid.getPrevError();
tsOutputChannels->debugFloatField4 = vUa;
tsOutputChannels->debugFloatField5 = vUr;
tsOutputChannels->debugFloatField6 = vUaCal;
tsOutputChannels->debugFloatField7 = vUrCal;
tsOutputChannels->debugIntField1 = state;
tsOutputChannels->debugIntField2 = diag;
}
void initCJ125(Logging *sharedLogger) {
logger = sharedLogger;
if (!boardConfiguration->isCJ125Enabled)
return;
if (CONFIG(cj125ur) == EFI_ADC_NONE || CONFIG(cj125ua) == EFI_ADC_NONE) {
scheduleMsg(logger, "cj125 init error! cj125ur and cj125ua are required.");
return;
}
if (boardConfiguration->wboHeaterPin == GPIO_UNASSIGNED) {
scheduleMsg(logger, "cj125 init error! wboHeaterPin is required.");
return;
}
cjInitPid();
cjStartSpi();
cjStartHeaterControl();
cjStart();
#if 1
state = CJ125_INIT;
#endif
addConsoleAction("cj125", cjStartTest);
addConsoleAction("cj125_calibrate", cjStartCalibration);
#ifdef CJ125_DEBUG
addConsoleActionF("cj125_heater", cjSetHeater);
addConsoleActionI("cj125_set_init1", cjSetInit1);
addConsoleActionI("cj125_set_init2", cjSetInit2);
#endif /* CJ125_DEBUG */
chThdCreateStatic(cjThreadStack, sizeof(cjThreadStack), LOWPRIO, (tfunc_t) cjThread, NULL);
}
2016-07-25 20:03:45 -07:00
#endif /* EFI_CJ125 */