rusefi-1/firmware/controllers/math/engine_math.cpp

428 lines
13 KiB
C++
Raw Normal View History

2015-07-10 06:01:56 -07:00
/**
* @file engine_math.cpp
* @brief
*
* @date Jul 13, 2013
* @author Andrey Belomutskiy, (c) 2012-2015
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "engine_math.h"
#include "engine_configuration.h"
#include "interpolation.h"
#include "allsensors.h"
#include "io_pins.h"
#include "trigger_decoder.h"
#include "event_registry.h"
#include "efiGpio.h"
#include "fuel_math.h"
EXTERN_ENGINE
;
extern engine_pins_s enginePins;
/**
* @return number of milliseconds in one crankshaft revolution
*/
2015-09-07 06:03:24 -07:00
floatms_t getCrankshaftRevolutionTimeMs(int rpm) {
2015-07-10 06:01:56 -07:00
return 360 * getOneDegreeTimeMs(rpm);
}
/**
* @brief Returns engine load according to selected engine_load_mode
*
*/
float getEngineLoadT(DECLARE_ENGINE_PARAMETER_F) {
efiAssert(engine!=NULL, "engine 2NULL", NAN);
efiAssert(engineConfiguration!=NULL, "engineConfiguration 2NULL", NAN);
switch (engineConfiguration->algorithm) {
case LM_PLAIN_MAF:
if (!hasMafSensor(PASS_ENGINE_PARAMETER_F)) {
warning(OBD_PCM_Processor_Fault, "MAF sensor needed for current fuel algorithm");
return NAN;
}
return getMafT(engineConfiguration);
case LM_SPEED_DENSITY:
// SD engine load is used for timing lookup but not for fuel calculation
case LM_MAP:
return getMap();
case LM_ALPHA_N:
return getTPS(PASS_ENGINE_PARAMETER_F);
case LM_REAL_MAF: {
return getRealMaf(PASS_ENGINE_PARAMETER_F);
}
default:
warning(OBD_PCM_Processor_Fault, "Unexpected engine load parameter: %d", engineConfiguration->algorithm);
return -1;
}
}
void setSingleCoilDwell(engine_configuration_s *engineConfiguration) {
for (int i = 0; i < DWELL_CURVE_SIZE; i++) {
engineConfiguration->sparkDwellBins[i] = -10 + i;
engineConfiguration->sparkDwell[i] = -1;
}
engineConfiguration->sparkDwellBins[5] = 1;
engineConfiguration->sparkDwell[5] = 4;
engineConfiguration->sparkDwellBins[6] = 4500;
engineConfiguration->sparkDwell[6] = 4;
engineConfiguration->sparkDwellBins[7] = 12500;
engineConfiguration->sparkDwell[7] = 0;
}
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
void initializeIgnitionActions(angle_t advance, angle_t dwellAngle,
IgnitionEventList *list DECLARE_ENGINE_PARAMETER_S) {
efiAssertVoid(engineConfiguration->specs.cylindersCount > 0, "cylindersCount");
list->reset();
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
angle_t localAdvance = advance + ENGINE(angleExtra[i]);
NamedOutputPin *output = ENGINE(ignitionPin[i]);
IgnitionEvent *event = list->add();
if (!isPinAssigned(output)) {
// todo: extact method for this index math
warning(OBD_PCM_Processor_Fault, "no_pin_cl #%s", output->name);
}
event->output = output;
event->advance = localAdvance;
findTriggerPosition(&event->dwellPosition, localAdvance - dwellAngle PASS_ENGINE_PARAMETER);
}
}
2015-08-23 19:01:55 -07:00
void FuelSchedule::registerInjectionEvent(int injectorIndex, float angle,
2015-07-10 06:01:56 -07:00
bool_t isSimultanious DECLARE_ENGINE_PARAMETER_S) {
2015-08-23 19:01:55 -07:00
NamedOutputPin *output = &enginePins.injectors[injectorIndex];
2015-07-10 06:01:56 -07:00
if (!isSimultanious && !isPinAssigned(output)) {
// todo: extact method for this index math
warning(OBD_PCM_Processor_Fault, "no_pin_inj #%s", output->name);
}
2015-08-30 11:01:28 -07:00
InjectionEvent *ev = injectionEvents.add();
2015-07-10 06:01:56 -07:00
if (ev == NULL) {
// error already reported
return;
}
2015-08-23 20:02:37 -07:00
ev->injectorIndex = injectorIndex;
2015-07-10 06:01:56 -07:00
ev->actuator.output = output;
ev->isSimultanious = isSimultanious;
efiAssertVoid(TRIGGER_SHAPE(getSize()) > 0, "uninitialized TriggerShape");
findTriggerPosition(&ev->injectionStart, angle PASS_ENGINE_PARAMETER);
if (!hasEvents[ev->injectionStart.eventIndex]) {
hasEvents[ev->injectionStart.eventIndex] = true;
eventsCount++;
}
}
FuelSchedule::FuelSchedule() {
clear();
}
void FuelSchedule::clear() {
memset(hasEvents, 0, sizeof(hasEvents));
eventsCount = 0;
}
void FuelSchedule::addFuelEvents(injection_mode_e mode DECLARE_ENGINE_PARAMETER_S) {
clear(); // this method is relatively heavy
// sourceList->reset();
2015-08-30 11:01:28 -07:00
injectionEvents.reset();
2015-07-10 06:01:56 -07:00
efiAssertVoid(engine!=NULL, "engine is NULL");
if (cisnan(engine->rpmCalculator.oneDegreeUs))
return;
efiAssertVoid(!cisnan(engine->rpmCalculator.oneDegreeUs), "NAN one deg");
/**
* injection phase is scheduled by injection end, so we need to step the angle back
* for the duration of the injection
*/
float baseAngle = ENGINE(engineState.injectionOffset)
+ CONFIG(injectionOffset) - MS2US(ENGINE(fuelMs)) / ENGINE(rpmCalculator.oneDegreeUs);
switch (mode) {
case IM_SEQUENTIAL:
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
int index = getCylinderId(engineConfiguration->specs.firingOrder, i) - 1;
float angle = baseAngle
+ (float) CONFIG(engineCycle) * i / CONFIG(specs.cylindersCount);
2015-08-23 19:01:55 -07:00
registerInjectionEvent(index, angle, false PASS_ENGINE_PARAMETER);
2015-07-10 06:01:56 -07:00
}
break;
case IM_SIMULTANEOUS:
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
float angle = baseAngle
+ (float) CONFIG(engineCycle) * i / CONFIG(specs.cylindersCount);
/**
* We do not need injector pin here because we will control all injectors
* simultaneously
*/
2015-08-23 19:01:55 -07:00
registerInjectionEvent(0, angle, true PASS_ENGINE_PARAMETER);
2015-07-10 06:01:56 -07:00
}
break;
case IM_BATCH:
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
int index = i % (engineConfiguration->specs.cylindersCount / 2);
float angle = baseAngle
+ i * (float) CONFIG(engineCycle) / CONFIG(specs.cylindersCount);
2015-08-23 19:01:55 -07:00
registerInjectionEvent(index, angle, false PASS_ENGINE_PARAMETER);
2015-07-10 06:01:56 -07:00
if (CONFIG(twoWireBatch)) {
/**
* also fire the 2nd half of the injectors so that we can implement a batch mode on individual wires
*/
index = index + (CONFIG(specs.cylindersCount) / 2);
2015-08-23 19:01:55 -07:00
registerInjectionEvent(index, angle, false PASS_ENGINE_PARAMETER);
2015-07-10 06:01:56 -07:00
}
}
break;
default:
warning(OBD_PCM_Processor_Fault, "Unexpected injection mode %d", mode);
}
}
#endif
/**
* @return Spark dwell time, in milliseconds.
*/
float getSparkDwellMsT(int rpm DECLARE_ENGINE_PARAMETER_S) {
if (isCrankingR(rpm)) {
if (engineConfiguration->useConstantDwellDuringCranking) {
return engineConfiguration->ignitionDwellForCrankingMs;
} else {
// technically this could be implemented via interpolate2d
float angle = engineConfiguration->crankingChargeAngle;
return getOneDegreeTimeMs(rpm) * angle;
}
}
efiAssert(!cisnan(rpm), "invalid rpm", NAN);
return interpolate2d(rpm, engineConfiguration->sparkDwellBins, engineConfiguration->sparkDwell, DWELL_CURVE_SIZE);
}
static int findAngleIndex(float angleOffset DECLARE_ENGINE_PARAMETER_S) {
/**
* Here we rely on this to be pre-calculated, that's a performance optimization
*/
int engineCycleEventCount = engine->engineCycleEventCount;
efiAssert(engineCycleEventCount > 0, "engineCycleEventCount", 0);
uint32_t middle;
uint32_t left = 0;
uint32_t right = engineCycleEventCount - 1;
/**
* Let's find the last trigger angle which is less or equal to the desired angle
* todo: extract binary search as template method?
*/
while (true) {
middle = (left + right) / 2;
2015-09-12 15:01:13 -07:00
angle_t eventAngle = TRIGGER_SHAPE(eventAngles[middle]);
2015-07-10 06:01:56 -07:00
if (middle == left) {
return middle;
}
if (angleOffset < eventAngle) {
right = middle;
} else if (angleOffset > eventAngle) {
left = middle;
} else {
return middle;
}
}
}
void findTriggerPosition(event_trigger_position_s *position, angle_t angleOffset DECLARE_ENGINE_PARAMETER_S) {
angleOffset += tdcPosition();
fixAngle(angleOffset);
int index = TRIGGER_SHAPE(triggerIndexByAngle[(int)angleOffset]);
angle_t eventAngle = TRIGGER_SHAPE(eventAngles[index]);
if (angleOffset < eventAngle) {
warning(OBD_PCM_Processor_Fault, "angle constraint violation in findTriggerPosition(): %f/%f", angleOffset, eventAngle);
return;
}
position->eventIndex = index;
position->eventAngle = eventAngle;
position->angleOffset = angleOffset - eventAngle;
}
static int order_1_THEN_3_THEN_4_THEN2[] = { 1, 3, 4, 2 };
static int order_1_THEN_2_THEN_4_THEN3[] = { 1, 2, 4, 3 };
static int order_1_THEN_3_THEN_2_THEN4[] = { 1, 3, 2, 4 };
static int order_1_2_4_5_3[] = {1, 2, 4, 5, 3};
static int order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[] = { 1, 5, 3, 6, 2, 4 };
static int order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[] = { 1, 4, 2, 5, 3, 6 };
2015-09-05 20:02:46 -07:00
static int order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[] = { 1, 2, 3, 4, 5, 6 };
2015-07-10 06:01:56 -07:00
static int order_1_8_4_3_6_5_7_2[] = { 1, 8, 4, 3, 6, 5, 7, 2 };
static int order_1_2[] = {1, 2};
2015-09-10 16:01:32 -07:00
static int order_1_2_3[] = {1, 2, 3};
2015-07-10 06:01:56 -07:00
/**
* @param index from zero to cylindersCount - 1
* @return cylinderId from one to cylindersCount
*/
int getCylinderId(firing_order_e firingOrder, int index) {
switch (firingOrder) {
case FO_ONE_CYLINDER:
return 1;
2015-09-10 16:01:32 -07:00
// 2 cylinder
2015-07-10 06:01:56 -07:00
case FO_1_THEN_2:
return order_1_2[index];
2015-09-10 16:01:32 -07:00
// 3 cylinder
case FO_1_2_3:
return order_1_2_3[index];
2015-07-10 06:01:56 -07:00
// 4 cylinder
case FO_1_THEN_3_THEN_4_THEN2:
return order_1_THEN_3_THEN_4_THEN2[index];
case FO_1_THEN_2_THEN_4_THEN3:
return order_1_THEN_2_THEN_4_THEN3[index];
case FO_1_THEN_3_THEN_2_THEN4:
return order_1_THEN_3_THEN_2_THEN4[index];
// 5 cylinder
case FO_1_2_4_5_3:
return order_1_2_4_5_3[index];
// 6 cylinder
case FO_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4:
return order_1_THEN_5_THEN_3_THEN_6_THEN_2_THEN_4[index];
case FO_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6:
return order_1_THEN_4_THEN_2_THEN_5_THEN_3_THEN_6[index];
2015-09-05 20:02:46 -07:00
case FO_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6:
return order_1_THEN_2_THEN_3_THEN_4_THEN_5_THEN_6[index];
2015-07-10 06:01:56 -07:00
// 8 cylinder
case FO_1_8_4_3_6_5_7_2:
return order_1_8_4_3_6_5_7_2[index];
default:
warning(OBD_PCM_Processor_Fault, "getCylinderId not supported for %d", firingOrder);
}
return 1;
}
static NamedOutputPin * getIgnitionPinForIndex(int i DECLARE_ENGINE_PARAMETER_S
) {
switch (CONFIG(ignitionMode)) {
case IM_ONE_COIL:
return &enginePins.coils[0];
break;
case IM_WASTED_SPARK: {
int wastedIndex = i % (CONFIG(specs.cylindersCount) / 2);
int id = getCylinderId(CONFIG(specs.firingOrder), wastedIndex);
return &enginePins.coils[ID2INDEX(id)];
}
break;
case IM_INDIVIDUAL_COILS:
return &enginePins.coils[ID2INDEX(getCylinderId(CONFIG(specs.firingOrder), i))];
break;
default:
warning(OBD_PCM_Processor_Fault, "unsupported ignitionMode %d in initializeIgnitionActions()", engineConfiguration->ignitionMode);
return &enginePins.coils[0];
}
}
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
void prepareOutputSignals(DECLARE_ENGINE_PARAMETER_F) {
engine_configuration2_s *engineConfiguration2 = engine->engineConfiguration2;
for (int i = 0; i < CONFIG(specs.cylindersCount); i++) {
ENGINE(angleExtra[i])= (float) CONFIG(engineCycle) * i / CONFIG(specs.cylindersCount);
ENGINE(ignitionPin[i]) = getIgnitionPinForIndex(i PASS_ENGINE_PARAMETER);
}
for (int angle = 0; angle < CONFIG(engineCycle); angle++) {
int triggerShapeIndex = findAngleIndex(angle PASS_ENGINE_PARAMETER);
if (engineConfiguration->useOnlyFrontForTrigger)
triggerShapeIndex = triggerShapeIndex & 0xFFFFFFFE; // we need even index for front_only
TRIGGER_SHAPE(triggerIndexByAngle[angle]) = triggerShapeIndex;
}
engineConfiguration2->crankingInjectionEvents.addFuelEvents(
engineConfiguration->crankingInjectionMode PASS_ENGINE_PARAMETER);
engineConfiguration2->injectionEvents.addFuelEvents(
engineConfiguration->injectionMode PASS_ENGINE_PARAMETER);
}
#endif
void setFuelRpmBin(float from, float to DECLARE_ENGINE_PARAMETER_S) {
setTableBin(config->fuelRpmBins, FUEL_RPM_COUNT, from, to);
}
void setFuelLoadBin(float from, float to DECLARE_ENGINE_PARAMETER_S) {
setTableBin(config->fuelLoadBins, FUEL_LOAD_COUNT, from, to);
}
void setTimingRpmBin(float from, float to DECLARE_ENGINE_PARAMETER_S) {
setTableBin(config->ignitionRpmBins, IGN_RPM_COUNT, from, to);
}
void setTimingLoadBin(float from, float to DECLARE_ENGINE_PARAMETER_S) {
setTableBin(config->ignitionLoadBins, IGN_LOAD_COUNT, from, to);
}
int isInjectionEnabled(engine_configuration_s *engineConfiguration) {
// todo: is this worth a method? should this be inlined?
return engineConfiguration->isInjectionEnabled;
}
/**
* this method sets algorithm and ignition table scale
*/
void setAlgorithm(engine_load_mode_e algo DECLARE_ENGINE_PARAMETER_S) {
engineConfiguration->algorithm = algo;
if (algo == LM_ALPHA_N) {
setTimingLoadBin(0, 100 PASS_ENGINE_PARAMETER);
} else if (algo == LM_SPEED_DENSITY) {
setTimingLoadBin(0, 160 PASS_ENGINE_PARAMETER);
}
}