#include "adc_subscription.h" #include "adc_inputs.h" #include "engine.h" #include "perf_trace.h" #include "biquad.h" #include EXTERN_ENGINE; #if EFI_UNIT_TEST void AdcSubscription::SubscribeSensor(FunctionalSensor &sensor, adc_channel_e channel, float lowpassCutoff, float voltsPerAdcVolt /*= 0.0f*/) { } #else struct AdcSubscriptionEntry { FunctionalSensor *Sensor; float VoltsPerAdcVolt; adc_channel_e Channel; Biquad Filter; bool HasUpdated = false; }; static size_t s_nextEntry = 0; static AdcSubscriptionEntry s_entries[8]; void AdcSubscription::SubscribeSensor(FunctionalSensor &sensor, adc_channel_e channel, float lowpassCutoff, float voltsPerAdcVolt /*= 0.0f*/) { // Don't subscribe null channels if (channel == EFI_ADC_NONE) { return; } // bounds check if (s_nextEntry >= std::size(s_entries)) { return; } // if 0, default to the board's divider coefficient if (voltsPerAdcVolt == 0) { voltsPerAdcVolt = engineConfiguration->analogInputDividerCoefficient; } // Populate the entry auto &entry = s_entries[s_nextEntry]; entry.Sensor = &sensor; entry.VoltsPerAdcVolt = voltsPerAdcVolt; entry.Channel = channel; entry.Filter.configureLowpass(SLOW_ADC_RATE, lowpassCutoff); s_nextEntry++; } void AdcSubscription::UpdateSubscribers(efitick_t nowNt) { ScopePerf perf(PE::AdcSubscriptionUpdateSubscribers); for (size_t i = 0; i < s_nextEntry; i++) { auto &entry = s_entries[i]; float mcuVolts = getVoltage("sensor", entry.Channel); float sensorVolts = mcuVolts * entry.VoltsPerAdcVolt; // On the very first update, preload the filter as if we've been // seeing this value for a long time. This prevents a slow ramp-up // towards the correct value just after startup if (!entry.HasUpdated) { entry.Filter.cookSteadyState(sensorVolts); entry.HasUpdated = true; } float filtered = entry.Filter.filter(sensorVolts); entry.Sensor->postRawValue(filtered, nowNt); } } #endif // !EFI_UNIT_TEST