/** * @file stm32_adc_v4.cpp * @brief Port implementation for the STM32 "v4" ADC found on the STM32H7 * * @date February 25, 2021 * @author Matthew Kennedy, (c) 2021 */ #include "global.h" #include "hal.h" #include "mpu_util.h" void portInitAdc() { // Init slow ADC adcStart(&ADCD1, NULL); // Connect the analog switches between {PA0_C, PA1_C, PC2_C, PC3_C} and their non-C counterparts // This lets us use normal (non-direct) analog on those channels SYSCFG->PMCR &= ~(SYSCFG_PMCR_PA0SO | SYSCFG_PMCR_PA1SO | SYSCFG_PMCR_PC2SO | SYSCFG_PMCR_PC3SO); } float getMcuTemperature() { // Ugh, internal temp sensor is wired to ADC3, which makes it nearly useless on the H7. return 0; } // ADC Clock is 25MHz // 32.5 sampling + 8.5 conversion = 41 cycles per sample total // 16 channels * 16x oversample = 256 samples per batch // (41 * 256) / 25MHz -> 419 microseconds to sample all channels #define ADC_SAMPLING_SLOW ADC_SMPR_SMP_32P5 // Sample the 16 channels that line up with the STM32F4/F7 constexpr size_t slowChannelCount = 16; // Conversion group for slow channels // This simply samples every channel in sequence static constexpr ADCConversionGroup convGroupSlow = { .circular = FALSE, .num_channels = slowChannelCount, .end_cb = nullptr, .error_cb = nullptr, .cfgr = 0, .cfgr2 = 15 << ADC_CFGR2_OVSR_Pos | // Oversample by 16x (register contains N-1) 4 << ADC_CFGR2_OVSS_Pos | // shift the result right 4 bits to make a 16 bit result ADC_CFGR2_ROVSE, // Enable oversampling .ccr = 0, .pcsel = 0xFFFFFFFF, // enable analog switches on all channels // Thresholds aren't used .ltr1 = 0, .htr1 = 0, .ltr2 = 0, .htr2 = 0, .ltr3 = 0, .htr3 = 0, .smpr = { // Configure all channels to use ADC_SAMPLING_SLOW time ADC_SMPR1_SMP_AN0(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN1(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN2(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN3(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN4(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN5(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN6(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN7(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN8(ADC_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN9(ADC_SAMPLING_SLOW), ADC_SMPR2_SMP_AN10(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN11(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN12(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN13(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN14(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN15(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN16(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN17(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN18(ADC_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN19(ADC_SAMPLING_SLOW) }, .sqr = { // The seemingly insane values here exist to put the values // in the buffer in the same order as the ADCv2 (F4/F7) ADC ADC_SQR1_SQ1_N(16) | // PA0 (aka PA0_C) ADC_SQR1_SQ2_N(17) | // PA1 (aka PA1_C) ADC_SQR1_SQ3_N(14) | // PA2 ADC_SQR1_SQ4_N(15), // PA3 ADC_SQR2_SQ5_N(18) | // PA4 ADC_SQR2_SQ6_N(19) | // PA5 ADC_SQR2_SQ7_N(3) | // PA6 ADC_SQR2_SQ8_N(7) | // PA7 ADC_SQR2_SQ9_N(9), // PB0 ADC_SQR3_SQ10_N(5) | // PB1 ADC_SQR3_SQ11_N(10) | // PC0 ADC_SQR3_SQ12_N(11) | // PC1 ADC_SQR3_SQ13_N(12) | // PC2 (aka PC2_C) ADC_SQR3_SQ14_N(13), // PC3 (aka PC3_C) ADC_SQR4_SQ15_N(4) | // PC4 ADC_SQR4_SQ16_N(8) // PC5 }, }; bool readSlowAnalogInputs(adcsample_t* convertedSamples) { // Oversampling and right-shift happen in hardware, so we can sample directly to the output buffer msg_t result = adcConvert(&ADCD1, &convGroupSlow, convertedSamples, 1); // Return true if OK return result == MSG_OK; }