/* * @file test_pid_auto.cpp * * @date Sep 29, 2019 * @author Andrey Belomutskiy, (c) 2012-2020 */ // see also idle.timingPid test #include "pch.h" #include "efi_pid.h" TEST(util, pid) { pid_s pidS; pidS.pFactor = 50; pidS.iFactor = 0.5; pidS.dFactor = 0; pidS.offset = 0; pidS.minValue = 10; pidS.maxValue = 90; pidS.periodMs = 1; Pid pid(&pidS); ASSERT_FLOAT_EQ( 90, pid.getOutput(14, 12, 0.1)) << "getValue#90"; ASSERT_FLOAT_EQ( 10, pid.getOutput(14, 16, 0.1)) << "getValue#10"; ASSERT_FLOAT_EQ(10, pid.getOutput(14, 16, 1)); pid.updateFactors(29, 0, 0); ASSERT_FLOAT_EQ(10, pid.getOutput(14, 16, 1)); // ASSERT_FLOAT_EQ(68, pid.getIntegration()); ASSERT_FLOAT_EQ(10, pid.getOutput(14, 16, 1)); // ASSERT_FLOAT_EQ(0, pid.getIntegration()); ASSERT_FLOAT_EQ(10, pid.getOutput(14, 16, 1)); // ASSERT_FLOAT_EQ(68, pid.getIntegration()); pidS.pFactor = 1; pidS.iFactor = 0; pidS.dFactor = 0; pidS.offset = 0; pidS.minValue = 0; pidS.maxValue = 100; pidS.periodMs = 1; pid.reset(); ASSERT_FLOAT_EQ( 50, pid.getOutput(/*target*/50, /*input*/0)) << "target=50, input=0"; ASSERT_FLOAT_EQ( 0, pid.iTerm) << "target=50, input=0 iTerm"; ASSERT_FLOAT_EQ( 0, pid.getOutput(/*target*/50, /*input*/70)) << "target=50, input=70"; ASSERT_FLOAT_EQ( 0, pid.iTerm) << "target=50, input=70 iTerm"; ASSERT_FLOAT_EQ( 0, pid.getOutput(/*target*/50, /*input*/70)) << "target=50, input=70 #2"; ASSERT_FLOAT_EQ( 0, pid.iTerm) << "target=50, input=70 iTerm #2"; ASSERT_FLOAT_EQ( 0, pid.getOutput(/*target*/50, /*input*/50)) << "target=50, input=50"; ASSERT_FLOAT_EQ( 0, pid.iTerm) << "target=50, input=50 iTerm"; } static void commonPidTestParameters(pid_s * pidS) { pidS->pFactor = 0; pidS->iFactor = 50; pidS->dFactor = 0; pidS->offset = 0; pidS->minValue = 10; pidS->maxValue = 40; pidS->periodMs = 1; } static void commonPidTest(Pid *pid) { pid->iTermMax = 45; ASSERT_FLOAT_EQ( 12.5, pid->getOutput(/*target*/50, /*input*/0)) << "target=50, input=0 #0"; ASSERT_FLOAT_EQ( 12.5, pid->getIntegration()); ASSERT_FLOAT_EQ( 25 , pid->getOutput(/*target*/50, /*input*/0)) << "target=50, input=0 #1"; ASSERT_FLOAT_EQ( 37.5, pid->getOutput(/*target*/50, /*input*/0)) << "target=50, input=0 #2"; ASSERT_FLOAT_EQ( 37.5, pid->getIntegration()); ASSERT_FLOAT_EQ( 40.0, pid->getOutput(/*target*/50, /*input*/0)) << "target=50, input=0 #3"; ASSERT_FLOAT_EQ( 45, pid->getIntegration()); } TEST(util, parallelPidLimits) { pid_s pidS; commonPidTestParameters(&pidS); Pid pid(&pidS); commonPidTest(&pid); } TEST(util, industrialPidLimits) { pid_s pidS; commonPidTestParameters(&pidS); PidIndustrial pid(&pidS); commonPidTest(&pid); } TEST(util, pidIndustrial) { pid_s pidS; pidS.pFactor = 1.0; pidS.iFactor = 1.0; pidS.dFactor = 1.0; pidS.offset = 0; pidS.minValue = 0; pidS.maxValue = 100; pidS.periodMs = 1; PidIndustrial pid; pid.initPidClass(&pidS); // we want to compare with the "normal" PID controller Pid pid0(&pidS); // no additional features pid.derivativeFilterLoss = 0; pid.antiwindupFreq = 0; float industValue = pid.getOutput(/*target*/1, /*input*/0); // check if the first output is clamped because of large deviative ASSERT_FLOAT_EQ(100.0, industValue); // check if all output of the 'zeroed' PidIndustrial (w/o new features) is the same as our "normal" Pid for (int i = 0; i < 10; i++) { float normalValue = pid0.getOutput(1, 0); ASSERT_FLOAT_EQ(normalValue, industValue) << "[" << i << "]"; industValue = pid.getOutput(1, 0); } pid.reset(); // now test the "derivative filter loss" param (some small value) pid.derivativeFilterLoss = 0.01; // now the first value is less (and not clipped!) due to the derivative filtering ASSERT_FLOAT_EQ(67.671669f, pid.getOutput(1, 0)); // here we still have some leftovers of the initial D-term ASSERT_FLOAT_EQ(45.4544487f, pid.getOutput(1, 0)); // but the value is quickly fading ASSERT_FLOAT_EQ(30.6446342f, pid.getOutput(1, 0)); pid.reset(); // now test much stronger "derivative filter loss" pid.derivativeFilterLoss = 0.1; // now the first value is much less due to the derivative filtering ASSERT_NEAR(10.5288095f, pid.getOutput(1, 0), EPS4D); // here we still have some leftovers of the initial D-term ASSERT_NEAR(10.0802946f, pid.getOutput(1, 0), EPS4D); // but the fading is slower than with 'weaker' derivative filter above ASSERT_NEAR(9.65337563f, pid.getOutput(1, 0), EPS4D); pid.reset(); pid.derivativeFilterLoss = 0; // now test "anti-windup" param pid.antiwindupFreq = 0.1; // the first value is clipped, and that's when the anti-windup comes into effect ASSERT_FLOAT_EQ(100.0f, pid.getOutput(1, 0)); // it stores a small negative offset in the I-term to avoid it's saturation! ASSERT_NEAR(-0.0455025025f, pid.getIntegration(), EPS4D); // and that's why the second output is smaller then that of normal PID (=1.00999999) ASSERT_NEAR(0.959497511f, pid.getOutput(1, 0), EPS4D); }