/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2016 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_mazda.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_bmw.h" #include "trigger_mitsubishi.h" #include "trigger_subaru.h" #include "trigger_nissan.h" #include "trigger_toyota.h" #include "trigger_rover.h" #include "auto_generated_enums.h" #include "trigger_structure.h" #include "efiGpio.h" #include "engine.h" #include "engine_math.h" #include "trigger_central.h" #include "trigger_simulator.h" #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif static OutputPin triggerDecoderErrorPin; EXTERN_ENGINE ; static cyclic_buffer errorDetection; #if ! EFI_PROD_CODE || defined(__DOXYGEN__) bool printTriggerDebug = false; float actualSynchGap; #endif /* ! EFI_PROD_CODE */ static Logging * logger; efitick_t lastDecodingErrorTime = US2NT(-10000000LL); // the boolean flag is a performance optimization so that complex comparison is avoided if no error bool someSortOfTriggerError = false; /** * @return TRUE is something is wrong with trigger decoding */ bool isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; } bool TriggerState::isValidIndex(DECLARE_ENGINE_PARAMETER_F) { return currentCycle.current_index < TRIGGER_SHAPE(size); } float TriggerState::getTriggerDutyCycle(int index) { float time = prevTotalTime[index]; return 100 * time / prevCycleDuration; } static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; //static trigger_value_e eventType[6] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE, TV_FALL, TV_RISE }; #define getCurrentGapDuration(nowNt) \ (isFirstEvent ? 0 : (nowNt) - toothed_previous_time) #define nextTriggerEvent() \ { \ uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \ if (prevTime != 0) { \ /* even event - apply the value*/ \ currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \ currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \ } else { \ /* odd event - start accumulation */ \ currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \ } \ if (engineConfiguration->useOnlyFrontForTrigger) {currentCycle.current_index++;} \ currentCycle.current_index++; \ } #define nextRevolution() { \ if (cycleCallback != NULL) { \ cycleCallback(this); \ } \ memcpy(prevTotalTime, currentCycle.totalTimeNt, sizeof(prevTotalTime)); \ prevCycleDuration = nowNt - startOfCycleNt; \ startOfCycleNt = nowNt; \ resetCurrentCycleState(); \ totalRevolutionCounter++; \ runningRevolutionCounter++; \ totalEventCountBase += TRIGGER_SHAPE(size); \ } /** * @brief Trigger decoding happens here * This method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) { efiAssertVoid(signal <= SHAFT_3RD_UP, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; if (!engineConfiguration->useOnlyFrontForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; currentCycle.eventCount[triggerWheel]++; efitime_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ currentDuration = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (isLessImportant(signal)) { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isLessImportant %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif /** * For less important events we simply increment the index. */ nextTriggerEvent() ; if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) { isFirstEvent = false; thirdPreviousDuration = durationBeforePrevious; durationBeforePrevious = toothed_previous_duration; toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } } else { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s event %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE || defined(__DOXYGEN__) // scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration); // scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration); #else if (toothed_previous_duration != 0) { // printf("ratio %f: cur=%d pref=%d\r\n", 1.0 * currentDuration / shaftPositionState->toothed_previous_duration, // currentDuration, shaftPositionState->toothed_previous_duration); } #endif bool isSynchronizationPoint; if (TRIGGER_SHAPE(isSynchronizationNeeded)) { /** * Here I prefer to have two multiplications instead of one division, that's a micro-optimization */ isSynchronizationPoint = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom) && currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo) && toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom) && toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo) // this is getting a little out of hand, any ideas? && durationBeforePrevious > thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioFrom) && durationBeforePrevious < thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioTo) ; #if EFI_PROD_CODE || defined(__DOXYGEN__) if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #else if (printTriggerDebug) { #endif /* EFI_PROD_CODE */ float gap = 1.0 * currentDuration / toothed_previous_duration; float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious; float gap3 = 1.0 * durationBeforePrevious / thirdPreviousDuration; #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "gap=%f/%f/%f @ %d while expected %f/%f/%f and %f/%f error=%d", gap, prevGap, gap3, currentCycle.current_index, TRIGGER_SHAPE(syncRatioFrom), TRIGGER_SHAPE(syncRatioTo), TRIGGER_SHAPE(secondSyncRatioFrom), TRIGGER_SHAPE(secondSyncRatioTo), someSortOfTriggerError); #else actualSynchGap = gap; print("current gap %f/%f/%f c=%d prev=%d\r\n", gap, prevGap, gap3, currentDuration, toothed_previous_duration); #endif /* EFI_PROD_CODE */ } } else { /** * in case of noise the counter could be above the expected number of events */ int d = engineConfiguration->useOnlyFrontForTrigger ? 2 : 1; isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= TRIGGER_SHAPE(size) - d); } #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); triggerDecoderErrorPin.setValue(isDecodingError); if (isDecodingError) { lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; totalTriggerErrorCounter++; if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) { #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); #endif /* EFI_PROD_CODE */ } } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(OBD_PCM_Processor_Fault, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent() ; nextRevolution(); } else { nextTriggerEvent() ; } thirdPreviousDuration = durationBeforePrevious; durationBeforePrevious = toothed_previous_duration; toothed_previous_duration = currentDuration; toothed_previous_time = nowNt; } if (!isValidIndex(PASS_ENGINE_PARAMETER_F)) { warning(OBD_PCM_Processor_Fault, "unexpected eventIndex=%d while size %d", currentCycle.current_index, TRIGGER_SHAPE(size)); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; } if (someSortOfTriggerError) { if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) { someSortOfTriggerError = false; } } if (boardConfiguration->sensorChartMode == SC_RPM_ACCEL || boardConfiguration->sensorChartMode == SC_DETAILED_RPM) { angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]); // todo: make this '90' depend on cylinder count? angle_t prevAngle = currentAngle - 90; fixAngle(prevAngle); // todo: prevIndex should be pre-calculated int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]); // now let's get precise angle for that event prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]); uint32_t time = nowNt - timeOfLastEvent[prevIndex]; angle_t angleDiff = currentAngle - prevAngle; // todo: angle diff should be pre-calculated fixAngle(angleDiff); float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; #if EFI_SENSOR_CHART || defined(__DOXYGEN__) if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) { scAddData(currentAngle, r); } else { scAddData(currentAngle, r / instantRpmValue[prevIndex]); } #endif instantRpmValue[currentCycle.current_index] = r; timeOfLastEvent[currentCycle.current_index] = nowNt; } } angle_t getEngineCycle(operation_mode_e operationMode) { return operationMode == TWO_STROKE ? 360 : 720; } void addSkippedToothTriggerEvents(trigger_wheel_e wheel, TriggerShape *s, int totalTeethCount, int skippedCount, float toothWidth, float offset, float engineCycle, float filterLeft, float filterRight) { efiAssertVoid(totalTeethCount > 0, "total count"); efiAssertVoid(skippedCount >= 0, "skipped count"); for (int i = 0; i < totalTeethCount - skippedCount - 1; i++) { float angleDown = engineCycle / totalTeethCount * (i + (1 - toothWidth)); float angleUp = engineCycle / totalTeethCount * (i + 1); s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight); s->addEvent(offset + angleUp, wheel, TV_FALL, filterLeft, filterRight); } float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth)); s->addEvent(offset + angleDown, wheel, TV_RISE, filterLeft, filterRight); s->addEvent(offset + engineCycle, wheel, TV_FALL, filterLeft, filterRight); } void initializeSkippedToothTriggerShapeExt(TriggerShape *s, int totalTeethCount, int skippedCount, operation_mode_e operationMode) { efiAssertVoid(totalTeethCount > 0, "totalTeethCount is zero"); efiAssertVoid(s != NULL, "TriggerShape is NULL"); s->initialize(operationMode, false); s->setTriggerSynchronizationGap(skippedCount + 1); s->isSynchronizationNeeded = (skippedCount != 0); addSkippedToothTriggerEvents(T_PRIMARY, s, totalTeethCount, skippedCount, 0.5, 0, getEngineCycle(operationMode), NO_LEFT_FILTER, NO_RIGHT_FILTER); } static void configureOnePlusOne(TriggerShape *s, operation_mode_e operationMode) { float engineCycle = getEngineCycle(operationMode); s->initialize(FOUR_STROKE_CAM_SENSOR, true); s->addEvent(180, T_PRIMARY, TV_RISE); s->addEvent(360, T_PRIMARY, TV_FALL); s->addEvent(540, T_SECONDARY, TV_RISE); s->addEvent(720, T_SECONDARY, TV_FALL); s->isSynchronizationNeeded = false; } static void configureOnePlus60_2(TriggerShape *s, operation_mode_e operationMode) { s->initialize(FOUR_STROKE_CAM_SENSOR, true); int totalTeethCount = 60; int skippedCount = 2; s->addEvent(2, T_PRIMARY, TV_RISE); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 2, 20); s->addEvent(20, T_PRIMARY, TV_FALL); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 20, NO_RIGHT_FILTER); addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 360, 360, NO_LEFT_FILTER, NO_RIGHT_FILTER); s->isSynchronizationNeeded = false; } /** * External logger is needed because at this point our logger is not yet initialized */ void TriggerShape::initializeTriggerShape(Logging *logger DECLARE_ENGINE_PARAMETER_S) { const trigger_config_s *triggerConfig = &engineConfiguration->trigger; #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssertVoid(getRemainingStack(chThdSelf()) > 256, "init t"); scheduleMsg(logger, "initializeTriggerShape(%s/%d)", getTrigger_type_e(triggerConfig->type), (int) triggerConfig->type); #endif TriggerShape *triggerShape = this; switch (triggerConfig->type) { case TT_TOOTHED_WHEEL: initializeSkippedToothTriggerShapeExt(triggerShape, triggerConfig->customTotalToothCount, triggerConfig->customSkippedToothCount, engineConfiguration->operationMode); break; case TT_MAZDA_MIATA_NA: initializeMazdaMiataNaShape(triggerShape PASS_ENGINE_PARAMETER); break; case TT_MAZDA_MIATA_NB: initializeMazdaMiataNbShape(triggerShape PASS_ENGINE_PARAMETER); break; case TT_DODGE_NEON_1995: configureNeon1995TriggerShape(triggerShape PASS_ENGINE_PARAMETER); break; case TT_DODGE_STRATUS: configureDodgeStratusTriggerShape(triggerShape PASS_ENGINE_PARAMETER); break; case TT_DODGE_NEON_2003: configureNeon2003TriggerShape(triggerShape PASS_ENGINE_PARAMETER); break; case TT_FORD_ASPIRE: configureFordAspireTriggerShape(triggerShape); break; case TT_GM_7X: // todo: fix this configureGmTriggerShape(triggerShape); configureFordAspireTriggerShape(triggerShape); break; case TT_MAZDA_DOHC_1_4: configureMazdaProtegeLx(triggerShape PASS_ENGINE_PARAMETER); break; case TT_ONE_PLUS_ONE: configureOnePlusOne(triggerShape, engineConfiguration->operationMode); break; case TT_ONE_PLUS_TOOTHED_WHEEL_60_2: configureOnePlus60_2(triggerShape, engineConfiguration->operationMode); break; case TT_ONE: setToothedWheelConfiguration(triggerShape, 1, 0, engineConfiguration->operationMode); break; case TT_MAZDA_SOHC_4: configureMazdaProtegeSOHC(triggerShape PASS_ENGINE_PARAMETER); break; case TT_MINI_COOPER_R50: configureMiniCooperTriggerShape(triggerShape); break; case TT_TOOTHED_WHEEL_60_2: setToothedWheelConfiguration(triggerShape, 60, 2, engineConfiguration->operationMode); break; case TT_60_2_VW: setVwConfiguration(triggerShape); break; case TT_TOOTHED_WHEEL_36_1: setToothedWheelConfiguration(triggerShape, 36, 1, engineConfiguration->operationMode); break; case TT_HONDA_ACCORD_CD_TWO_WIRES: configureHondaAccordCD(triggerShape, false, true, T_CHANNEL_3, T_PRIMARY, 0); break; case TT_HONDA_ACCORD_CD: configureHondaAccordCD(triggerShape, true, true, T_CHANNEL_3, T_PRIMARY, 0); break; case TT_HONDA_ACCORD_1_24: configureHondaAccordCD(triggerShape, true, false, T_PRIMARY, T_PRIMARY, 10); break; case TT_HONDA_ACCORD_CD_DIP: configureHondaAccordCDDip(triggerShape); break; case TT_MITSU: initializeMitsubishi4g18(triggerShape); break; case TT_DODGE_RAM: initDodgeRam(triggerShape PASS_ENGINE_PARAMETER); break; case TT_36_2_2_2: initialize36_2_2_2(triggerShape); break; case TT_2JZ: initialize2jzGE(triggerShape); break; case TT_NISSAN: initializeNissan(triggerShape); break; case TT_ROVER_K: initializeRoverK(triggerShape); break; default: firmwareError("initializeTriggerShape() not implemented: %d", triggerConfig->type); ; return; } wave.checkSwitchTimes(getSize()); calculateTriggerSynchPoint(&engine->triggerCentral.triggerState PASS_ENGINE_PARAMETER); } static void onFindIndex(TriggerState *state) { for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { // todo: that's not the best place for this intermediate data storage, fix it! state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i]; } } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within TriggerShape */ uint32_t findTriggerZeroEventIndex(TriggerState *state, TriggerShape * shape, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) { #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssert(getRemainingStack(chThdSelf()) > 128, "findPos", -1); #endif errorDetection.clear(); efiAssert(state != NULL, "NULL state", -1); state->reset(); // todo: should this variable be declared 'static' to reduce stack usage? TriggerStimulatorHelper helper; uint32_t index = helper.doFindTrigger(shape, triggerConfig, state PASS_ENGINE_PARAMETER); if (index == EFI_ERROR_CODE) { return index; } efiAssert(state->getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE); /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle * * todo: add a comment why are we doing '2 * shape->getSize()' here? */ state->cycleCallback = onFindIndex; helper.assertSyncPositionAndSetDutyCycle(index, state, shape, triggerConfig PASS_ENGINE_PARAMETER); return index % shape->getSize(); } void initTriggerDecoderLogger(Logging *sharedLogger) { logger = sharedLogger; } void initTriggerDecoder(void) { #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) outputPinRegisterExt2("trg_err", &triggerDecoderErrorPin, boardConfiguration->triggerErrorPin, &boardConfiguration->triggerErrorPinMode); #endif } #endif /* EFI_SHAFT_POSITION_INPUT */