/** * @file engine_controller.cpp * @brief Controllers package entry point code * * * * @date Feb 7, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "global.h" #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif #include "engine_configuration.h" #include "trigger_central.h" #include "engine_controller.h" #include "fsio_core.h" #include "fsio_impl.h" #include "idle_thread.h" #include "rpm_calculator.h" #include "signal_executor.h" #include "main_trigger_callback.h" #include "io_pins.h" #include "flash_main.h" #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) #include "tunerstudio.h" #endif #include "injector_central.h" #include "rfiutil.h" #include "engine_math.h" #if EFI_WAVE_ANALYZER || defined(__DOXYGEN__) #include "wave_analyzer.h" #endif #include "allsensors.h" #include "electronic_throttle.h" #include "map_averaging.h" #include "malfunction_central.h" #include "malfunction_indicator.h" #include "engine.h" #include "algo.h" #include "local_version_holder.h" #include "alternator_controller.h" #include "fuel_math.h" #include "settings.h" #include "aux_pid.h" #include "accelerometer.h" #include "counter64.h" #if HAL_USE_ADC || defined(__DOXYGEN__) #include "AdcConfiguration.h" #endif /* HAL_USE_ADC */ #if EFI_PROD_CODE || defined(__DOXYGEN__) #include "pwm_generator.h" #include "adc_inputs.h" #include "pwm_tester.h" #include "pwm_generator.h" #include "lcd_controller.h" #include "pin_repository.h" #include "tachometer.h" #endif /* EFI_PROD_CODE */ #if EFI_CJ125 || defined(__DOXYGEN__) #include "CJ125.h" #endif #if defined(EFI_BOOTLOADER_INCLUDE_CODE) || defined(__DOXYGEN__) #include "bootloader/bootloader.h" #endif /* EFI_BOOTLOADER_INCLUDE_CODE */ extern bool hasFirmwareErrorFlag; extern EnginePins enginePins; EXTERN_ENGINE; /** * CH_FREQUENCY is the number of system ticks in a second */ static virtual_timer_t periodicSlowTimer; // 20Hz static virtual_timer_t periodicFastTimer; // 50Hz static LoggingWithStorage logger("Engine Controller"); #if (EFI_PROD_CODE || EFI_SIMULATOR) || defined(__DOXYGEN__) /** * todo: this should probably become 'static', i.e. private, and propagated around explicitly? */ Engine ___engine CCM_OPTIONAL; Engine * engine = &___engine; #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ static msg_t csThread(void) { chRegSetThreadName("status"); #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) while (true) { int is_cranking = ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE); bool is_running = ENGINE(rpmCalculator).isRunning(PASS_ENGINE_PARAMETER_SIGNATURE); if (is_running) { // blinking while running enginePins.runningLedPin.setValue(0); chThdSleepMilliseconds(50); enginePins.runningLedPin.setValue(1); chThdSleepMilliseconds(50); } else { // constant on while cranking and off if engine is stopped enginePins.runningLedPin.setValue(is_cranking); chThdSleepMilliseconds(100); } } #endif /* EFI_SHAFT_POSITION_INPUT */ return -1; } #if EFI_PROD_CODE || defined(__DOXYGEN__) static Overflow64Counter halTime; /** * 64-bit result would not overflow, but that's complex stuff for our 32-bit MCU */ //todo: macro to save method invocation efitimeus_t getTimeNowUs(void) { return getTimeNowNt() / (CORE_CLOCK / 1000000); } //todo: macro to save method invocation efitick_t getTimeNowNt(void) { #if EFI_PROD_CODE bool alreadyLocked = lockAnyContext(); efitime_t localH = halTime.state.highBits; uint32_t localLow = halTime.state.lowBits; uint32_t value = GET_TIMESTAMP(); if (value < localLow) { // new value less than previous value means there was an overflow in that 32 bit counter localH += 0x100000000LL; } efitime_t result = localH + value; if (!alreadyLocked) { unlockAnyContext(); } return result; #else // todo: why is this implementation not used? /** * this method is lock-free and thread-safe, that's because the 'update' method * is atomic with a critical zone requirement. * * http://stackoverflow.com/questions/5162673/how-to-read-two-32bit-counters-as-a-64bit-integer-without-race-condition */ efitime_t localH; efitime_t localH2; uint32_t localLow; int counter = 0; do { localH = halTime.state.highBits; localLow = halTime.state.lowBits; localH2 = halTime.state.highBits; #if EFI_PROD_CODE || defined(__DOXYGEN__) if (counter++ == 10000) chDbgPanic("lock-free frozen"); #endif /* EFI_PROD_CODE */ } while (localH != localH2); /** * We need to take current counter after making a local 64 bit snapshot */ uint32_t value = GET_TIMESTAMP(); if (value < localLow) { // new value less than previous value means there was an overflow in that 32 bit counter localH += 0x100000000LL; } return localH + value; #endif } /** * number of SysClock ticks in one ms */ #define TICKS_IN_MS (CH_CFG_ST_FREQUENCY / 1000) // todo: this overflows pretty fast! efitimems_t currentTimeMillis(void) { // todo: migrate to getTimeNowUs? or not? return chVTGetSystemTimeX() / TICKS_IN_MS; } // todo: this overflows pretty fast! efitimesec_t getTimeNowSeconds(void) { return currentTimeMillis() / 1000; } #endif /* EFI_PROD_CODE */ static LocalVersionHolder versionForConfigurationListeners; static void periodicSlowCallback(Engine *engine); static void scheduleNextSlowInvocation(void) { // schedule next invocation int periodMs = CONFIGB(generalPeriodicThreadPeriodMs); if (periodMs == 0) periodMs = 50; // this might happen while resetting configuration chVTSetAny(&periodicSlowTimer, TIME_MS2I(periodMs), (vtfunc_t) &periodicSlowCallback, engine); } static void periodicFastCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) { engine->periodicFastCallback(); /** * not many reasons why we use ChibiOS timer and not say a dedicated thread here * the only down-side of a dedicated thread is the cost of thread stack */ chVTSetAny(&periodicFastTimer, TIME_MS2I(20), (vtfunc_t) &periodicFastCallback, engine); } static void resetAccel(void) { engine->engineLoadAccelEnrichment.reset(); engine->tpsAccelEnrichment.reset(); engine->wallFuel.reset(); } static int previousSecond; #if EFI_CLOCK_LOCKS typedef FLStack irq_enter_timestamps_t; static irq_enter_timestamps_t irqEnterTimestamps; void irqEnterHook(void) { irqEnterTimestamps.push(GET_TIMESTAMP()); } static int currentIrqDurationAccumulator = 0; static int currentIrqCounter = 0; /** * See also maxLockedDuration */ int perSecondIrqDuration = 0; int perSecondIrqCounter = 0; void irqExitHook(void) { int enterTime = irqEnterTimestamps.pop(); currentIrqDurationAccumulator += (GET_TIMESTAMP() - enterTime); currentIrqCounter++; } #endif /* EFI_CLOCK_LOCKS */ static void invokePerSecond(void) { #if EFI_CLOCK_LOCKS // this data transfer is not atomic but should be totally good enough perSecondIrqDuration = currentIrqDurationAccumulator; perSecondIrqCounter = currentIrqCounter; currentIrqDurationAccumulator = currentIrqCounter = 0; #endif /* EFI_CLOCK_LOCKS */ } static void periodicSlowCallback(Engine *engine) { #if (EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT) || defined(__DOXYGEN__) efiAssertVoid(CUSTOM_ERR_6661, getCurrentRemainingStack() > 64, "lowStckOnEv"); #if EFI_PROD_CODE /** * We need to push current value into the 64 bit counter often enough so that we do not miss an overflow */ bool alreadyLocked = lockAnyContext(); updateAndSet(&halTime.state, GET_TIMESTAMP()); if (!alreadyLocked) { unlockAnyContext(); } int timeSeconds = getTimeNowSeconds(); if (previousSecond != timeSeconds) { previousSecond = timeSeconds; invokePerSecond(); } #endif /* EFI_PROD_CODE */ /** * Update engine RPM state if needed (check timeouts). */ bool isSpinning = engine->rpmCalculator.checkIfSpinning(getTimeNowNt() PASS_ENGINE_PARAMETER_SUFFIX); if (!isSpinning) { engine->rpmCalculator.setStopSpinning(PASS_ENGINE_PARAMETER_SIGNATURE); } if (engine->rpmCalculator.isStopped(PASS_ENGINE_PARAMETER_SIGNATURE)) { #if EFI_INTERNAL_FLASH || defined(__DOXYGEN__) writeToFlashIfPending(); #endif /* EFI_INTERNAL_FLASH */ resetAccel(); } else { updatePrimeInjectionPulseState(PASS_ENGINE_PARAMETER_SIGNATURE); } if (versionForConfigurationListeners.isOld(engine->getGlobalConfigurationVersion())) { updateAccelParameters(); engine->engineState.warmupAfrPid.reset(); } engine->periodicSlowCallback(PASS_ENGINE_PARAMETER_SIGNATURE); scheduleNextSlowInvocation(); #endif } void initPeriodicEvents(DECLARE_ENGINE_PARAMETER_SIGNATURE) { periodicSlowCallback(engine); periodicFastCallback(PASS_ENGINE_PARAMETER_SIGNATURE); } char * getPinNameByAdcChannel(const char *msg, adc_channel_e hwChannel, char *buffer) { #if HAL_USE_ADC || defined(__DOXYGEN__) if (hwChannel == EFI_ADC_NONE) { strcpy(buffer, "NONE"); } else { strcpy((char*) buffer, portname(getAdcChannelPort(msg, hwChannel))); itoa10(&buffer[2], getAdcChannelPin(hwChannel)); } #else strcpy(buffer, "NONE"); #endif return (char*) buffer; } static char pinNameBuffer[16]; #if HAL_USE_ADC || defined(__DOXYGEN__) extern AdcDevice fastAdc; #endif static void printAnalogChannelInfoExt(const char *name, adc_channel_e hwChannel, float adcVoltage, float dividerCoeff) { #if HAL_USE_ADC || defined(__DOXYGEN__) if (hwChannel == EFI_ADC_NONE) { scheduleMsg(&logger, "ADC is not assigned for %s", name); return; } if (fastAdc.isHwUsed(hwChannel)) { scheduleMsg(&logger, "fast enabled=%s", boolToString(CONFIGB(isFastAdcEnabled))); } float voltage = adcVoltage * dividerCoeff; scheduleMsg(&logger, "%s ADC%d %s %s adc=%.2f/input=%.2fv/divider=%.2f", name, hwChannel, getAdcMode(hwChannel), getPinNameByAdcChannel(name, hwChannel, pinNameBuffer), adcVoltage, voltage, dividerCoeff); #endif } static void printAnalogChannelInfo(const char *name, adc_channel_e hwChannel) { #if HAL_USE_ADC || defined(__DOXYGEN__) printAnalogChannelInfoExt(name, hwChannel, getVoltage("print", hwChannel), engineConfiguration->analogInputDividerCoefficient); #endif } static void printAnalogInfo(void) { scheduleMsg(&logger, "analogInputDividerCoefficient: %.2f", engineConfiguration->analogInputDividerCoefficient); printAnalogChannelInfo("hip9011", engineConfiguration->hipOutputChannel); printAnalogChannelInfo("fuel gauge", engineConfiguration->fuelLevelSensor); printAnalogChannelInfo("TPS", engineConfiguration->tpsAdcChannel); printAnalogChannelInfo("pPS", engineConfiguration->throttlePedalPositionAdcChannel); if (engineConfiguration->clt.adcChannel != EFI_ADC_NONE) { printAnalogChannelInfo("CLT", engineConfiguration->clt.adcChannel); } if (engineConfiguration->iat.adcChannel != EFI_ADC_NONE) { printAnalogChannelInfo("IAT", engineConfiguration->iat.adcChannel); } if (hasMafSensor()) { printAnalogChannelInfo("MAF", engineConfiguration->mafAdcChannel); } for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) { adc_channel_e ch = engineConfiguration->fsioAdc[i]; if (ch != EFI_ADC_NONE) { printAnalogChannelInfo("fsio", ch); } } printAnalogChannelInfo("AFR", engineConfiguration->afr.hwChannel); if (hasMapSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { printAnalogChannelInfo("MAP", engineConfiguration->map.sensor.hwChannel); } if (hasBaroSensor(PASS_ENGINE_PARAMETER_SIGNATURE)) { printAnalogChannelInfo("BARO", engineConfiguration->baroSensor.hwChannel); } if (engineConfiguration->externalKnockSenseAdc != EFI_ADC_NONE) { printAnalogChannelInfo("extKno", engineConfiguration->externalKnockSenseAdc); } printAnalogChannelInfo("OilP", engineConfiguration->oilPressure.hwChannel); printAnalogChannelInfo("A/C sw", engineConfiguration->acSwitchAdc); printAnalogChannelInfo("HIP9011", engineConfiguration->hipOutputChannel); printAnalogChannelInfoExt("Vbatt", engineConfiguration->vbattAdcChannel, getVoltage("vbatt", engineConfiguration->vbattAdcChannel), engineConfiguration->vbattDividerCoeff); } static THD_WORKING_AREA(csThreadStack, UTILITY_THREAD_STACK_SIZE); // declare thread stack #define isOutOfBounds(offset) ((offset<0) || (offset) >= (int) sizeof(engine_configuration_s)) static void getShort(int offset) { if (isOutOfBounds(offset)) return; uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]); uint16_t value = *ptr; /** * this response is part of dev console API */ scheduleMsg(&logger, "short @%d is %d", offset, value); } static void setBit(const char *offsetStr, const char *bitStr, const char *valueStr) { int offset = atoi(offsetStr); if (absI(offset) == absI(ERROR_CODE)) { scheduleMsg(&logger, "invalid offset [%s]", offsetStr); return; } if (isOutOfBounds(offset)) { return; } int bit = atoi(bitStr); if (absI(bit) == absI(ERROR_CODE)) { scheduleMsg(&logger, "invalid bit [%s]", bitStr); return; } int value = atoi(valueStr); if (absI(value) == absI(ERROR_CODE)) { scheduleMsg(&logger, "invalid value [%s]", valueStr); return; } int *ptr = (int *) (&((char *) engineConfiguration)[offset]); *ptr ^= (-value ^ *ptr) & (1 << bit); /** * this response is part of dev console API */ scheduleMsg(&logger, "bit @%d/%d is %d", offset, bit, value); incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE); } static void setShort(const int offset, const int value) { if (isOutOfBounds(offset)) return; uint16_t *ptr = (uint16_t *) (&((char *) engineConfiguration)[offset]); *ptr = (uint16_t) value; getShort(offset); incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE); } static void getBit(int offset, int bit) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); int value = (*ptr >> bit) & 1; /** * this response is part of dev console API */ scheduleMsg(&logger, "bit @%d/%d is %d", offset, bit, value); } static void getInt(int offset) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); int value = *ptr; /** * this response is part of dev console API */ scheduleMsg(&logger, "int @%d is %d", offset, value); } static void setInt(const int offset, const int value) { if (isOutOfBounds(offset)) return; int *ptr = (int *) (&((char *) engineConfiguration)[offset]); *ptr = value; getInt(offset); incrementGlobalConfigurationVersion(PASS_ENGINE_PARAMETER_SIGNATURE); } static void getFloat(int offset) { if (isOutOfBounds(offset)) return; float *ptr = (float *) (&((char *) engineConfiguration)[offset]); float value = *ptr; /** * this response is part of dev console API */ scheduleMsg(&logger, "float @%d is %.5f", offset, value); } static void setFloat(const char *offsetStr, const char *valueStr) { int offset = atoi(offsetStr); if (absI(offset) == absI(ERROR_CODE)) { scheduleMsg(&logger, "invalid offset [%s]", offsetStr); return; } if (isOutOfBounds(offset)) return; float value = atoff(valueStr); if (cisnan(value)) { scheduleMsg(&logger, "invalid value [%s]", valueStr); return; } float *ptr = (float *) (&((char *) engineConfiguration)[offset]); *ptr = value; getFloat(offset); } #if EFI_ENABLE_MOCK_ADC || EFI_SIMULATOR static void setMockVoltage(int hwChannel, float voltage) { engine->engineState.mockAdcState.setMockVoltage(hwChannel, voltage); } void setMockCltVoltage(float voltage) { setMockVoltage(engineConfiguration->clt.adcChannel, voltage); } void setMockIatVoltage(float voltage) { setMockVoltage(engineConfiguration->iat.adcChannel, voltage); } void setMockMafVoltage(float voltage) { setMockVoltage(engineConfiguration->mafAdcChannel, voltage); } void setMockAfrVoltage(float voltage) { setMockVoltage(engineConfiguration->afr.hwChannel, voltage); } void setMockTpsVoltage(float voltage) { setMockVoltage(engineConfiguration->tpsAdcChannel, voltage); } void setMockMapVoltage(float voltage) { setMockVoltage(engineConfiguration->map.sensor.hwChannel, voltage); } void setMockVBattVoltage(float voltage) { setMockVoltage(engineConfiguration->vbattAdcChannel, voltage); } static void initMockVoltage(void) { #if EFI_SIMULATOR || defined(__DOXYGEN__) setMockCltVoltage(2); #endif /* EFI_SIMULATOR */ #if EFI_SIMULATOR || defined(__DOXYGEN__) setMockIatVoltage(2); #endif /* EFI_SIMULATOR */ } #endif /* EFI_ENABLE_MOCK_ADC */ static void initConfigActions(void) { addConsoleActionSS("set_float", (VoidCharPtrCharPtr) setFloat); addConsoleActionII("set_int", (VoidIntInt) setInt); addConsoleActionII("set_short", (VoidIntInt) setShort); addConsoleActionSSS("set_bit", setBit); addConsoleActionI("get_float", getFloat); addConsoleActionI("get_int", getInt); addConsoleActionI("get_short", getShort); addConsoleActionII("get_bit", getBit); } // todo: move this logic somewhere else? static void getKnockInfo(void) { adc_channel_e hwChannel = engineConfiguration->externalKnockSenseAdc; scheduleMsg(&logger, "externalKnockSenseAdc on ADC", getPinNameByAdcChannel("knock", hwChannel, pinNameBuffer)); engine->printKnockState(); } // this method is used by real firmware and simulator void commonInitEngineController(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_SIMULATOR printf("commonInitEngineController\n"); #endif initConfigActions(); #if EFI_ENABLE_MOCK_ADC initMockVoltage(); #endif /* EFI_ENABLE_MOCK_ADC */ #if EFI_SENSOR_CHART || defined(__DOXYGEN__) initSensorChart(); #endif /* EFI_SENSOR_CHART */ #if EFI_PROD_CODE || EFI_SIMULATOR || defined(__DOXYGEN__) // todo: this is a mess, remove code duplication with simulator initSettings(); #endif #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) if (engineConfiguration->isTunerStudioEnabled) { startTunerStudioConnectivity(); } #endif if (hasFirmwareError()) { return; } initSensors(sharedLogger PASS_ENGINE_PARAMETER_SIGNATURE); #if EFI_FSIO || defined(__DOXYGEN__) initFsioImpl(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX); #endif initAccelEnrichment(sharedLogger); } void initEngineContoller(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_SIMULATOR printf("initEngineContoller\n"); #endif addConsoleAction("analoginfo", printAnalogInfo); commonInitEngineController(sharedLogger); #if EFI_PROD_CODE || defined(__DOXYGEN__) initPwmGenerator(); #endif initAlgo(sharedLogger); #if EFI_WAVE_ANALYZER || defined(__DOXYGEN__) if (engineConfiguration->isWaveAnalyzerEnabled) { initWaveAnalyzer(sharedLogger); } #endif /* EFI_WAVE_ANALYZER */ #if EFI_CJ125 || defined(__DOXYGEN__) /** * this uses SimplePwm which depends on scheduler, has to be initialized after scheduler */ initCJ125(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_CJ125 */ #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) /** * there is an implicit dependency on the fact that 'tachometer' listener is the 1st listener - this case * other listeners can access current RPM value */ initRpmCalculator(sharedLogger PASS_ENGINE_PARAMETER_SUFFIX); #endif /* EFI_SHAFT_POSITION_INPUT */ #if (EFI_PROD_CODE && EFI_ENGINE_CONTROL) || defined(__DOXYGEN__) initInjectorCentral(sharedLogger); #endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */ // multiple issues with this initMapAdjusterThread(); // periodic events need to be initialized after fuel&spark pins to avoid a warning initPeriodicEvents(PASS_ENGINE_PARAMETER_SIGNATURE); if (hasFirmwareError()) { return; } chThdCreateStatic(csThreadStack, sizeof(csThreadStack), LOWPRIO, (tfunc_t)(void*) csThread, NULL); #if (EFI_PROD_CODE && EFI_ENGINE_CONTROL) || defined(__DOXYGEN__) /** * This has to go after 'initInjectorCentral' and 'initInjectorCentral' in order to * properly detect un-assigned output pins */ prepareShapes(PASS_ENGINE_PARAMETER_SIGNATURE); #endif /* EFI_PROD_CODE && EFI_ENGINE_CONTROL */ #if EFI_PWM_TESTER || defined(__DOXYGEN__) initPwmTester(); #endif /* EFI_PWM_TESTER */ initMalfunctionCentral(); #if EFI_ALTERNATOR_CONTROL || defined(__DOXYGEN__) initAlternatorCtrl(sharedLogger); #endif #if EFI_AUX_PID || defined(__DOXYGEN__) initAuxPid(sharedLogger); #endif #if EFI_ELECTRONIC_THROTTLE_BODY || defined(__DOXYGEN__) initElectronicThrottle(); #endif /* EFI_ELECTRONIC_THROTTLE_BODY */ #if EFI_MALFUNCTION_INDICATOR || defined(__DOXYGEN__) initMalfunctionIndicator(); #endif /* EFI_MALFUNCTION_INDICATOR */ #if EFI_MAP_AVERAGING || defined(__DOXYGEN__) if (engineConfiguration->isMapAveragingEnabled) { initMapAveraging(sharedLogger, engine); } #endif /* EFI_MAP_AVERAGING */ initEgoAveraging(PASS_ENGINE_PARAMETER_SIGNATURE); #if (EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT) || defined(__DOXYGEN__) if (CONFIGB(isEngineControlEnabled)) { /** * This method initialized the main listener which actually runs injectors & ignition */ initMainEventListener(sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX); } #endif /* EFI_ENGINE_CONTROL */ #if EFI_IDLE_CONTROL || defined(__DOXYGEN__) startIdleThread(sharedLogger); #endif /* EFI_IDLE_CONTROL */ if (engineConfiguration->externalKnockSenseAdc != EFI_ADC_NONE) { addConsoleAction("knockinfo", getKnockInfo); } #if EFI_PROD_CODE || defined(__DOXYGEN__) addConsoleAction("reset_accel", resetAccel); #endif /* EFI_PROD_CODE */ #if EFI_HD44780_LCD || defined(__DOXYGEN__) initLcdController(); #endif /* EFI_HD44780_LCD */ #if EFI_PROD_CODE || defined(__DOXYGEN__) initTachometer(); #endif /* EFI_PROD_CODE */ } // these two variables are here only to let us know how much RAM is available, also these // help to notice when RAM usage goes up - if a code change adds to RAM usage these variables would fail // linking process which is the way to raise the alarm #ifndef RAM_UNUSED_SIZE #define RAM_UNUSED_SIZE 10000 #endif #ifndef CCM_UNUSED_SIZE #define CCM_UNUSED_SIZE 6800 #endif static char UNUSED_RAM_SIZE[RAM_UNUSED_SIZE]; static char UNUSED_CCM_SIZE[CCM_UNUSED_SIZE] CCM_OPTIONAL; /** * See also VCS_VERSION */ int getRusEfiVersion(void) { if (UNUSED_RAM_SIZE[0] != 0) return 123; // this is here to make the compiler happy about the unused array if (UNUSED_CCM_SIZE[0] * 0 != 0) return 3211; // this is here to make the compiler happy about the unused array #if defined(EFI_BOOTLOADER_INCLUDE_CODE) || defined(__DOXYGEN__) // make bootloader code happy too if (initBootloader() != 0) return 123; #endif /* EFI_BOOTLOADER_INCLUDE_CODE */ return 20190407; }