rusefi-1/firmware/console/console_io.cpp

325 lines
9.9 KiB
C++

/**
* @file console_io.cpp
*
* @date Dec 29, 2012
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEFI can communicate with external universe via native USB or some sort of TTL mode
* We have an interesting situation with TTL communication channels, we have
* 1) SERIAL - this one was implemented first simply because the code was readily available (works on stm32)
* this one is most suitable for streaming HAL API
* this one is not great since each byte requires an IRQ and with enough IRQ delay we have a risk of data loss
* 2) UART DMA - the best one since FIFO buffer reduces data loss (works on stm32)
* We have two halves of DMA buffer - one is used for TTL while rusEFI prepares next batch of data in the other side.
* We need idle support in order to not wait for the complete buffer to get full in order to recieve a message.
* Back when we were implementing this STM32_DMA_CR_HTIE was not available in ChibiOS driver so we have added it.
* we have custom rusEFI changes to ChibiOS HAL driver v1
* F7 uses driver v2 which currently does not have rusEFI changes.
* open question if fresh ChibiOS is better in this regard.
* 3) UART this one is useful on platforms with hardware FIFO buffer like Kinetis.
* stm32 does not have such buffer so for stm32 UART without DMA has no advantages
*
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "engine.h"
#include "console_io.h"
#include "os_util.h"
#include "tunerstudio.h"
#include "connector_uart_dma.h"
#if EFI_SIMULATOR
#include "rusEfiFunctionalTest.h"
#endif /*EFI_SIMULATOR */
EXTERN_ENGINE;
#if HAL_USE_SERIAL_USB
#include "usbcfg.h"
#include "usbconsole.h"
extern SerialUSBDriver SDU1;
#endif /* HAL_USE_SERIAL_USB */
// 10 seconds
#define CONSOLE_WRITE_TIMEOUT 10000
static bool isSerialConsoleStarted = false;
static event_listener_t consoleEventListener;
bool consoleByteArrived = false;
void onDataArrived(void) {
consoleByteArrived = true;
}
/**
* @brief Reads a whole line from the input channel.
*
* @param[in] chp pointer to a @p BaseChannel object
* @param[in] line pointer to the line buffer
* @param[in] size buffer maximum length
* @return The operation status.
* @retval TRUE the channel was reset or CTRL-D pressed.
* @retval FALSE operation successful.
*/
/* let's keep this dead code for a bit
static bool getConsoleLine(BaseSequentialStream *chp, char *line, unsigned size) {
char *p = line;
while (true) {
if (!isCommandLineConsoleReady()) {
// we better do not read from serial before it is ready
chThdSleepMilliseconds(10);
continue;
}
short c = (short) streamGet(chp);
onDataArrived();
#if defined(EFI_CONSOLE_SERIAL_DEVICE)
uint32_t flags;
chSysLock()
;
flags = chEvtGetAndClearFlagsI(&consoleEventListener);
chSysUnlock()
;
if (flags & SD_OVERRUN_ERROR) {
// firmwareError(OBD_PCM_Processor_Fault, "serial overrun");
}
#endif
#if EFI_UART_ECHO_TEST_MODE
// That's test code - let's test connectivity
consolePutChar((uint8_t) c);
continue;
#endif
if (c < 0 || c == 4) {
return true;
}
if (c == 8) {
if (p != line) {
// backspace
consolePutChar((uint8_t) c);
consolePutChar(0x20);
consolePutChar((uint8_t) c);
p--;
}
continue;
}
if (c == '\r') {
consolePutChar('\r');
consolePutChar('\n');
*p = 0;
return false;
}
if (c == '\n') {
consolePutChar('\n');
*p = 0;
return false;
}
if (c < 0x20) {
continue;
}
if (p < line + size - 1) {
consolePutChar((uint8_t) c);
*p++ = (char) c;
}
}
}
*/
CommandHandler console_line_callback;
#if (defined(EFI_CONSOLE_SERIAL_DEVICE) && ! EFI_SIMULATOR )
SerialConfig serialConfig = { 0, 0, USART_CR2_STOP1_BITS | USART_CR2_LINEN, 0 };
#endif
#if (defined(EFI_CONSOLE_UART_DEVICE) && ! EFI_SIMULATOR )
/* Note: This structure is modified from the default ChibiOS layout! */
UARTConfig uartConfig = {
.txend1_cb = NULL, .txend2_cb = NULL, .rxend_cb = NULL, .rxchar_cb = NULL, .rxerr_cb = NULL,
.speed = 0, .cr1 = 0, .cr2 = 0/*USART_CR2_STOP1_BITS*/ | USART_CR2_LINEN, .cr3 = 0,
.timeout_cb = NULL, .rxhalf_cb = NULL
};
// To use UART driver instead of Serial, we need to imitate "BaseChannel" streaming functionality
static msg_t _putt(void *, uint8_t b, sysinterval_t timeout) {
int n = 1;
uartSendTimeout(EFI_CONSOLE_UART_DEVICE, (size_t *)&n, &b, timeout);
return MSG_OK;
}
static size_t _writet(void *, const uint8_t *bp, size_t n, sysinterval_t timeout) {
uartSendTimeout(EFI_CONSOLE_UART_DEVICE, (size_t *)&n, bp, timeout);
return n;
}
static msg_t _put(void *ip, uint8_t b) {
#ifdef UART_USE_BLOCKING_SEND
// this version can be called from the locked state (no interrupts)
uart_lld_blocking_send(EFI_CONSOLE_UART_DEVICE, 1, (void *)&b);
#else
// uartSendTimeout() needs interrupts to wait for the end of transfer, so we have to unlock them temporary
bool wasLocked = isLocked();
if (wasLocked)
unlockAnyContext();
_putt(ip, b, CONSOLE_WRITE_TIMEOUT);
if (wasLocked)
lockAnyContext();
#endif /* UART_USE_BLOCKING_WRITE */
return MSG_OK;
}
static size_t _write(void *ip, const uint8_t *bp, size_t n) {
return _writet(ip, bp, n, CONSOLE_WRITE_TIMEOUT);
}
static msg_t _gett(void *, sysinterval_t /*timeout*/) {
return 0;
}
static size_t _readt(void *, uint8_t */*bp*/, size_t /*n*/, sysinterval_t /*timeout*/) {
return 0;
}
static msg_t _get(void *) {
return 0;
}
static size_t _read(void *, uint8_t */*bp*/, size_t /*n*/) {
return 0;
}
static msg_t _ctl(void *, unsigned int /*operation*/, void */*arg*/) {
return MSG_OK;
}
// This is a "fake" channel for getConsoleChannel() filled with our handlers
static const struct BaseChannelVMT uartChannelVmt = {
.instance_offset = (size_t)0, .write = _write, .read = _read, .put = _put, .get = _get,
.putt = _putt, .gett = _gett, .writet = _writet, .readt = _readt, .ctl = _ctl
};
static const BaseChannel uartChannel = { .vmt = &uartChannelVmt };
#endif /* EFI_CONSOLE_UART_DEVICE */
ts_channel_s primaryChannel;
#if EFI_PROD_CODE || EFI_EGT
bool isUsbSerial(BaseChannel * channel) {
#if HAL_USE_SERIAL_USB
return channel == (BaseChannel *) &CONSOLE_USB_DEVICE;
#else
return false;
#endif
}
BaseChannel * getConsoleChannel(void) {
#if PRIMARY_UART_DMA_MODE
if (primaryChannel.uartp != nullptr) {
// primary channel is in DMA mode - we do not have a stream implementation for this.
return nullptr;
}
#endif
#if defined(EFI_CONSOLE_SERIAL_DEVICE)
return (BaseChannel *) EFI_CONSOLE_SERIAL_DEVICE;
#endif /* EFI_CONSOLE_SERIAL_DEVICE */
#if defined(EFI_CONSOLE_UART_DEVICE)
return (BaseChannel *) &uartChannel;
#endif /* EFI_CONSOLE_UART_DEVICE */
#if HAL_USE_SERIAL_USB
return (BaseChannel *) &CONSOLE_USB_DEVICE;
#else
return nullptr;
#endif /* HAL_USE_SERIAL_USB */
}
bool isCommandLineConsoleReady(void) {
return isSerialConsoleStarted;
}
#endif /* EFI_PROD_CODE || EFI_EGT */
#if !defined(EFI_CONSOLE_NO_THREAD)
static THD_WORKING_AREA(consoleThreadStack, CONNECTIVITY_THREAD_STACK);
static THD_FUNCTION(consoleThreadEntryPoint, arg) {
(void) arg;
chRegSetThreadName("console thread");
#if !PRIMARY_UART_DMA_MODE
primaryChannel.channel = (BaseChannel *) getConsoleChannel();
#endif
#if EFI_TUNER_STUDIO
runBinaryProtocolLoop(&primaryChannel);
#endif /* EFI_TUNER_STUDIO */
}
#endif /* EFI_CONSOLE_NO_THREAD */
void consolePutChar(int x) {
BaseChannel * channel = getConsoleChannel();
if (channel != nullptr) {
chnWriteTimeout(channel, (const uint8_t *)&x, 1, CONSOLE_WRITE_TIMEOUT);
}
}
void consoleOutputBuffer(const uint8_t *buf, int size) {
#if !EFI_UART_ECHO_TEST_MODE
BaseChannel * channel = getConsoleChannel();
if (channel != nullptr) {
chnWriteTimeout(channel, buf, size, CONSOLE_WRITE_TIMEOUT);
}
#endif /* EFI_UART_ECHO_TEST_MODE */
}
static Logging *logger;
void startConsole(Logging *sharedLogger, CommandHandler console_line_callback_p) {
logger = sharedLogger;
console_line_callback = console_line_callback_p;
#if (defined(EFI_CONSOLE_SERIAL_DEVICE) || defined(EFI_CONSOLE_UART_DEVICE)) && ! EFI_SIMULATOR
efiSetPadMode("console RX", EFI_CONSOLE_RX_BRAIN_PIN, PAL_MODE_ALTERNATE(EFI_CONSOLE_AF));
efiSetPadMode("console TX", EFI_CONSOLE_TX_BRAIN_PIN, PAL_MODE_ALTERNATE(EFI_CONSOLE_AF));
#endif
#if PRIMARY_UART_DMA_MODE && ! EFI_SIMULATOR
primaryChannel.uartp = EFI_CONSOLE_UART_DEVICE;
startUartDmaConnector(primaryChannel.uartp PASS_CONFIG_PARAMETER_SUFFIX);
isSerialConsoleStarted = true;
#elif (defined(EFI_CONSOLE_SERIAL_DEVICE) && ! EFI_SIMULATOR)
/*
* Activates the serial
* it is important to set 'NONE' as flow control! in terminal application on the PC
*/
serialConfig.speed = engineConfiguration->uartConsoleSerialSpeed;
sdStart(EFI_CONSOLE_SERIAL_DEVICE, &serialConfig);
chEvtRegisterMask((event_source_t *) chnGetEventSource(EFI_CONSOLE_SERIAL_DEVICE), &consoleEventListener, 1);
isSerialConsoleStarted = true;
#elif (defined(EFI_CONSOLE_UART_DEVICE) && ! EFI_SIMULATOR)
uartConfig.speed = engineConfiguration->uartConsoleSerialSpeed;
uartStart(EFI_CONSOLE_UART_DEVICE, &uartConfig);
isSerialConsoleStarted = true;
#endif /* EFI_CONSOLE_SERIAL_DEVICE || EFI_CONSOLE_UART_DEVICE */
#if !defined(EFI_CONSOLE_NO_THREAD)
chThdCreateStatic(consoleThreadStack, sizeof(consoleThreadStack), NORMALPRIO, (tfunc_t)consoleThreadEntryPoint, NULL);
#endif /* EFI_CONSOLE_NO_THREAD */
}