rusefi-1/firmware/controllers/actuators/idle_thread.cpp

746 lines
26 KiB
C++

/**
* @file idle_thread.cpp
* @brief Idle Air Control valve thread.
*
* This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle.
* This file has the hardware & scheduling logic, desired idle level lives separately.
*
*
* @date May 23, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* enable verbose_idle
* disable verbose_idle
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "global.h"
#if EFI_IDLE_CONTROL
#include "engine_configuration.h"
#include "rpm_calculator.h"
#include "idle_thread.h"
#include "idle_hardware.h"
#include "engine_math.h"
#include "engine.h"
#include "periodic_task.h"
#include "allsensors.h"
#include "sensor.h"
#include "dc_motors.h"
#if EFI_TUNER_STUDIO
#include "stepper.h"
#endif
EXTERN_ENGINE;
// todo: move all static vars to engine->engineState.idle?
static bool shouldResetPid = false;
// The idea of 'mightResetPid' is to reset PID only once - each time when TPS > idlePidDeactivationTpsThreshold.
// The throttle pedal can be pressed for a long time, making the PID data obsolete (thus the reset is required).
// We set 'mightResetPid' to true only if PID was actually used (i.e. idlePid.getOutput() was called) to save some CPU resources.
// See automaticIdleController().
static bool mightResetPid = false;
// This is needed to slowly turn on the PID back after it was reset.
static bool wasResetPid = false;
// This is used when the PID configuration is changed, to guarantee the reset
static bool mustResetPid = false;
static efitimeus_t restoreAfterPidResetTimeUs = 0;
class PidWithOverrides : public PidIndustrial {
public:
float getOffset() const override {
#if EFI_UNIT_TEST
EXPAND_Engine;
#endif
float result = parameters->offset;
#if EFI_FSIO
if (engineConfiguration->useFSIO12ForIdleOffset) {
return result + ENGINE(fsioState.fsioIdleOffset);
}
#endif /* EFI_FSIO */
return result;
}
float getMinValue() const override {
#if EFI_UNIT_TEST
EXPAND_Engine;
#endif
float result = parameters->minValue;
#if EFI_FSIO
if (engineConfiguration->useFSIO13ForIdleMinValue) {
return result + ENGINE(fsioState.fsioIdleMinValue);
}
#endif /* EFI_FSIO */
return result;
}
};
static PidWithOverrides industrialWithOverrideIdlePid;
#if EFI_IDLE_PID_CIC
// Use PID with CIC integrator
static PidCic idleCicPid;
#endif //EFI_IDLE_PID_CIC
Pid * getIdlePid(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_IDLE_PID_CIC
if (CONFIG(useCicPidForIdle)) {
return &idleCicPid;
}
#endif /* EFI_IDLE_PID_CIC */
return &industrialWithOverrideIdlePid;
}
float getIdlePidOffset(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getOffset();
}
float getIdlePidMinValue(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
return getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getMinValue();
}
static uint32_t lastCrankingCyclesCounter = 0;
static float lastCrankingIacPosition;
static iacPidMultiplier_t iacPidMultMap("iacPidMultiplier");
#if ! EFI_UNIT_TEST
void idleDebug(const char *msg, percent_t value) {
efiPrintf("idle debug: %s%.2f", msg, value);
}
static void showIdleInfo(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
const char * idleModeStr = getIdle_mode_e(engineConfiguration->idleMode);
efiPrintf("useStepperIdle=%s useHbridges=%s",
boolToString(CONFIG(useStepperIdle)), boolToString(CONFIG(useHbridges)));
efiPrintf("idleMode=%s position=%.2f",
idleModeStr, getIdlePosition());
if (CONFIG(useStepperIdle)) {
if (CONFIG(useHbridges)) {
efiPrintf("Coil A:");
efiPrintf(" pin1=%s", hwPortname(CONFIG(stepperDcIo[0].directionPin1)));
efiPrintf(" pin2=%s", hwPortname(CONFIG(stepperDcIo[0].directionPin2)));
showDcMotorInfo(2);
efiPrintf("Coil B:");
efiPrintf(" pin1=%s", hwPortname(CONFIG(stepperDcIo[1].directionPin1)));
efiPrintf(" pin2=%s", hwPortname(CONFIG(stepperDcIo[1].directionPin2)));
showDcMotorInfo(3);
} else {
efiPrintf("directionPin=%s reactionTime=%.2f", hwPortname(CONFIG(idle).stepperDirectionPin),
engineConfiguration->idleStepperReactionTime);
efiPrintf("stepPin=%s steps=%d", hwPortname(CONFIG(idle).stepperStepPin),
engineConfiguration->idleStepperTotalSteps);
efiPrintf("enablePin=%s/%d", hwPortname(engineConfiguration->stepperEnablePin),
engineConfiguration->stepperEnablePinMode);
}
} else {
if (!CONFIG(isDoubleSolenoidIdle)) {
efiPrintf("idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency,
hwPortname(CONFIG(idle).solenoidPin));
} else {
efiPrintf("idle valve freq=%d on %s", CONFIG(idle).solenoidFrequency,
hwPortname(CONFIG(idle).solenoidPin));
efiPrintf(" and %s", hwPortname(CONFIG(secondSolenoidPin)));
}
}
if (engineConfiguration->idleMode == IM_AUTO) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus("idle");
}
}
void setIdleMode(idle_mode_e value DECLARE_ENGINE_PARAMETER_SUFFIX) {
engineConfiguration->idleMode = value ? IM_AUTO : IM_MANUAL;
showIdleInfo();
}
percent_t getIdlePosition() {
return engine->engineState.idle.currentIdlePosition;
}
void setManualIdleValvePosition(int positionPercent) {
if (positionPercent < 1 || positionPercent > 99)
return;
efiPrintf("setting idle valve position %d", positionPercent);
#if ! EFI_UNIT_TEST
showIdleInfo();
#endif /* EFI_UNIT_TEST */
// todo: this is not great that we have to write into configuration here
CONFIG(manIdlePosition) = positionPercent;
}
#endif /* EFI_UNIT_TEST */
void IdleController::init(pid_s* idlePidConfig) {
m_timingPid.initPidClass(idlePidConfig);
}
int IdleController::getTargetRpm(float clt) const {
// TODO: bump target rpm based on AC and/or fan(s)?
float fsioBump = engine->fsioState.fsioIdleTargetRPMAdjustment;
return fsioBump + interpolate2d(clt, CONFIG(cltIdleRpmBins), CONFIG(cltIdleRpm));
}
IIdleController::Phase IdleController::determinePhase(int rpm, int targetRpm, SensorResult tps) const {
if (!engine->rpmCalculator.isRunning()) {
return Phase::Cranking;
}
if (!tps) {
// If the TPS has failed, assume the engine is running
return Phase::Running;
}
// if throttle pressed, we're out of the idle corner
if (tps.Value > CONFIG(idlePidDeactivationTpsThreshold)) {
return Phase::Running;
}
// If rpm too high (but throttle not pressed), we're coasting
int maximumIdleRpm = targetRpm + CONFIG(idlePidRpmUpperLimit);
if (rpm > maximumIdleRpm) {
return Phase::Coasting;
}
// No other conditions met, we are idling!
return Phase::Idling;
}
float IdleController::getCrankingOpenLoop(float clt) const {
return
CONFIG(crankingIACposition) // Base cranking position (cranking page)
* interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr);
}
float IdleController::getRunningOpenLoop(float clt, SensorResult tps) const {
float running =
CONFIG(manIdlePosition) // Base idle position (slider)
* interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
// Now we bump it by the AC/fan amount if necessary
running += engine->acSwitchState ? CONFIG(acIdleExtraOffset) : 0;
// TODO: fan idle bump needs its own config field
running += enginePins.fanRelay.getLogicValue() ? CONFIG(acIdleExtraOffset) : 0;
// Now bump it by the specified amount when the throttle is opened (if configured)
// nb: invalid tps will make no change, no explicit check required
running += interpolateClamped(
0, 0,
CONFIG(idlePidDeactivationTpsThreshold), CONFIG(iacByTpsTaper),
tps.value_or(0));
return clampF(0, running, 100);
}
float IdleController::getOpenLoop(Phase phase, float clt, SensorResult tps) const {
float running = getRunningOpenLoop(clt, tps);
// Cranking value is either its own table, or the running value if not overriden
float cranking = CONFIG(overrideCrankingIacSetting) ? getCrankingOpenLoop(clt) : running;
// if we're cranking, nothing more to do.
if (phase == Phase::Cranking) {
return cranking;
}
// Interpolate between cranking and running over a short time
// This clamps once you fall off the end, so no explicit check for running required
auto revsSinceStart = engine->rpmCalculator.getRevolutionCounterSinceStart();
return interpolateClamped(0, cranking, CONFIG(afterCrankingIACtaperDuration), running, revsSinceStart);
}
float IdleController::getIdleTimingAdjustment(int rpm) {
return getIdleTimingAdjustment(rpm, m_lastTargetRpm, m_lastPhase);
}
float IdleController::getIdleTimingAdjustment(int rpm, int targetRpm, Phase phase) {
// if not enabled, do nothing
if (!CONFIG(useIdleTimingPidControl)) {
return 0;
}
// If not idling, do nothing
if (phase != Phase::Idling) {
m_timingPid.reset();
return 0;
}
if (CONFIG(useInstantRpmForIdle)) {
rpm = engine->triggerCentral.triggerState.getInstantRpm();
}
// If inside the deadzone, do nothing
if (absI(rpm - targetRpm) < CONFIG(idleTimingPidDeadZone)) {
m_timingPid.reset();
return 0;
}
// We're now in the idle mode, and RPM is inside the Timing-PID regulator work zone!
return m_timingPid.getOutput(targetRpm, rpm, FAST_CALLBACK_PERIOD_MS / 1000.0f);
}
static percent_t manualIdleController(float cltCorrection DECLARE_ENGINE_PARAMETER_SUFFIX) {
percent_t correctedPosition = cltCorrection * CONFIG(manIdlePosition);
return correctedPosition;
}
/**
* idle blip is a development tool: alternator PID research for instance have benefited from a repetitive change of RPM
*/
static percent_t blipIdlePosition;
static efitimeus_t timeToStopBlip = 0;
efitimeus_t timeToStopIdleTest = 0;
/**
* I use this questionable feature to tune acceleration enrichment
*/
static void blipIdle(int idlePosition, int durationMs) {
if (timeToStopBlip != 0) {
return; // already in idle blip
}
blipIdlePosition = idlePosition;
timeToStopBlip = getTimeNowUs() + 1000 * durationMs;
}
static void finishIdleTestIfNeeded() {
if (timeToStopIdleTest != 0 && getTimeNowUs() > timeToStopIdleTest)
timeToStopIdleTest = 0;
}
static void undoIdleBlipIfNeeded() {
if (timeToStopBlip != 0 && getTimeNowUs() > timeToStopBlip) {
timeToStopBlip = 0;
}
}
/**
* @return idle valve position percentage for automatic closed loop mode
*/
static percent_t automaticIdleController(float tpsPos, float rpm, int targetRpm, IIdleController::Phase phase DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (shouldResetPid) {
// we reset only if I-term is negative, because the positive I-term is good - it keeps RPM from dropping too low
if (getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getIntegration() <= 0 || mustResetPid) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->reset();
mustResetPid = false;
}
// alternatorPidResetCounter++;
shouldResetPid = false;
wasResetPid = true;
}
// todo: move this to pid_s one day
industrialWithOverrideIdlePid.antiwindupFreq = engineConfiguration->idle_antiwindupFreq;
industrialWithOverrideIdlePid.derivativeFilterLoss = engineConfiguration->idle_derivativeFilterLoss;
efitimeus_t nowUs = getTimeNowUs();
if (phase != IIdleController::Phase::Idling) {
// Don't store old I and D terms if PID doesn't work anymore.
// Otherwise they will affect the idle position much later, when the throttle is closed.
if (mightResetPid) {
mightResetPid = false;
shouldResetPid = true;
}
engine->engineState.idle.idleState = TPS_THRESHOLD;
// just leave IAC position as is (but don't return currentIdlePosition - it may already contain additionalAir)
return engine->engineState.idle.baseIdlePosition;
}
// #1553 we need to give FSIO variable offset or minValue a chance
bool acToggleJustTouched = (nowUs - engine->acSwitchLastChangeTime) < MS2US(500);
// check if within the dead zone
if (!acToggleJustTouched && absI(rpm - targetRpm) <= CONFIG(idlePidRpmDeadZone)) {
engine->engineState.idle.idleState = RPM_DEAD_ZONE;
// current RPM is close enough, no need to change anything
return engine->engineState.idle.baseIdlePosition;
}
// When rpm < targetRpm, there's a risk of dropping RPM too low - and the engine dies out.
// So PID reaction should be increased by adding extra percent to PID-error:
percent_t errorAmpCoef = 1.0f;
if (rpm < targetRpm)
errorAmpCoef += (float)CONFIG(pidExtraForLowRpm) / PERCENT_MULT;
// if PID was previously reset, we store the time when it turned on back (see errorAmpCoef correction below)
if (wasResetPid) {
restoreAfterPidResetTimeUs = nowUs;
wasResetPid = false;
}
// increase the errorAmpCoef slowly to restore the process correctly after the PID reset
// todo: move restoreAfterPidResetTimeUs to engineState.idle?
efitimeus_t timeSincePidResetUs = nowUs - /*engine->engineState.idle.*/restoreAfterPidResetTimeUs;
// todo: add 'pidAfterResetDampingPeriodMs' setting
errorAmpCoef = interpolateClamped(0.0f, 0.0f, MS2US(/*CONFIG(pidAfterResetDampingPeriodMs)*/1000), errorAmpCoef, timeSincePidResetUs);
// If errorAmpCoef > 1.0, then PID thinks that RPM is lower than it is, and controls IAC more aggressively
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->setErrorAmplification(errorAmpCoef);
percent_t newValue = getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->getOutput(targetRpm, rpm, SLOW_CALLBACK_PERIOD_MS / 1000.0f);
engine->engineState.idle.idleState = PID_VALUE;
// the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold)
mightResetPid = true;
// Apply PID Multiplier if used
if (CONFIG(useIacPidMultTable)) {
float engineLoad = getFuelingLoad(PASS_ENGINE_PARAMETER_SIGNATURE);
float multCoef = iacPidMultMap.getValue(rpm / RPM_1_BYTE_PACKING_MULT, engineLoad);
// PID can be completely disabled of multCoef==0, or it just works as usual if multCoef==1
newValue = interpolateClamped(0.0f, engine->engineState.idle.baseIdlePosition, 1.0f, newValue, multCoef);
}
// Apply PID Deactivation Threshold as a smooth taper for TPS transients.
// if tps==0 then PID just works as usual, or we completely disable it if tps>=threshold
newValue = interpolateClamped(0.0f, newValue, CONFIG(idlePidDeactivationTpsThreshold), engine->engineState.idle.baseIdlePosition, tpsPos);
// Interpolate to the manual position when RPM is close to the upper RPM limit (if idlePidRpmUpperLimit is set).
// If RPM increases and the throttle is closed, then we're in coasting mode, and we should smoothly disable auto-pid.
// If we just leave IAC at baseIdlePosition (as in case of TPS deactivation threshold), RPM would get stuck.
// That's why there's 'useIacTableForCoasting' setting which involves a separate IAC position table for coasting (iacCoasting).
// Currently it's user-defined. But eventually we'll use a real calculated and stored IAC position instead.
int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone);
if (CONFIG(idlePidRpmUpperLimit) > 0) {
engine->engineState.idle.idleState = PID_UPPER;
const auto [cltValid, clt] = Sensor::get(SensorType::Clt);
if (CONFIG(useIacTableForCoasting) && cltValid) {
percent_t iacPosForCoasting = interpolate2d(clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting));
newValue = interpolateClamped(idlePidLowerRpm, newValue, idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit), iacPosForCoasting, rpm);
} else {
// Well, just leave it as is, without PID regulation...
newValue = engine->engineState.idle.baseIdlePosition;
}
}
return newValue;
}
float IdleController::getIdlePosition() {
// Simplify hardware CI: we borrow the idle valve controller as a PWM source for various stimulation tasks
// The logic in this function is solidly unit tested, so it's not necessary to re-test the particulars on real hardware.
#ifdef HARDWARE_CI
return CONFIG(manIdlePosition);
#endif
/*
* Here we have idle logic thread - actual stepper movement is implemented in a separate
* working thread,
* @see stepper.cpp
*/
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMin = engineConfiguration->idlerpmpid_iTermMin;
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->iTermMax = engineConfiguration->idlerpmpid_iTermMax;
// On failed sensor, use 0 deg C - should give a safe highish idle
float clt = Sensor::get(SensorType::Clt).value_or(0);
auto tps = Sensor::get(SensorType::DriverThrottleIntent);
float rpm;
if (CONFIG(useInstantRpmForIdle)) {
rpm = engine->triggerCentral.triggerState.getInstantRpm();
} else {
rpm = GET_RPM();
}
// Compute the target we're shooting for
auto targetRpm = getTargetRpm(clt);
m_lastTargetRpm = targetRpm;
// Determine what operation phase we're in - idling or not
auto phase = determinePhase(rpm, targetRpm, tps);
m_lastPhase = phase;
engine->engineState.isAutomaticIdle = tps.Valid && engineConfiguration->idleMode == IM_AUTO;
if (engineConfiguration->isVerboseIAC && engine->engineState.isAutomaticIdle) {
efiPrintf("Idle state %s", getIdle_state_e(engine->engineState.idle.idleState));
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->showPidStatus("idle");
}
finishIdleTestIfNeeded();
undoIdleBlipIfNeeded();
// cltCorrection is used only for cranking or running in manual mode
float cltCorrection;
// Use separate CLT correction table for cranking
if (engineConfiguration->overrideCrankingIacSetting && phase == IIdleController::Phase::Cranking) {
cltCorrection = interpolate2d(clt, config->cltCrankingCorrBins, config->cltCrankingCorr);
} else {
// this value would be ignored if running in AUTO mode
// but we need it while cranking in AUTO mode
cltCorrection = interpolate2d(clt, config->cltIdleCorrBins, config->cltIdleCorr);
}
percent_t iacPosition;
if (timeToStopBlip != 0) {
iacPosition = blipIdlePosition;
engine->engineState.idle.baseIdlePosition = iacPosition;
engine->engineState.idle.idleState = BLIP;
} else if (phase == IIdleController::Phase::Cranking) {
// during cranking it's always manual mode, PID would make no sense during cranking
iacPosition = clampPercentValue(cltCorrection * engineConfiguration->crankingIACposition);
// save cranking position & cycles counter for taper transition
lastCrankingIacPosition = iacPosition;
lastCrankingCyclesCounter = engine->rpmCalculator.getRevolutionCounterSinceStart();
engine->engineState.idle.baseIdlePosition = iacPosition;
} else {
if (!tps.Valid || engineConfiguration->idleMode == IM_MANUAL) {
// let's re-apply CLT correction
iacPosition = manualIdleController(cltCorrection PASS_ENGINE_PARAMETER_SUFFIX);
} else {
iacPosition = automaticIdleController(tps.Value, rpm, targetRpm, phase PASS_ENGINE_PARAMETER_SUFFIX);
}
iacPosition = clampPercentValue(iacPosition);
// store 'base' iacPosition without adjustments
engine->engineState.idle.baseIdlePosition = iacPosition;
float additionalAir = (float)engineConfiguration->iacByTpsTaper;
if (tps.Valid) {
iacPosition += interpolateClamped(0.0f, 0.0f, CONFIG(idlePidDeactivationTpsThreshold), additionalAir, tps.Value);
}
// taper transition from cranking to running (uint32_t to float conversion is safe here)
if (engineConfiguration->afterCrankingIACtaperDuration > 0)
iacPosition = interpolateClamped(lastCrankingCyclesCounter, lastCrankingIacPosition,
lastCrankingCyclesCounter + engineConfiguration->afterCrankingIACtaperDuration, iacPosition,
engine->rpmCalculator.getRevolutionCounterSinceStart());
}
#if EFI_TUNER_STUDIO
tsOutputChannels.isIdleClosedLoop = phase == Phase::Idling;
tsOutputChannels.isIdleCoasting = phase == Phase::Coasting;
if (engineConfiguration->debugMode == DBG_IDLE_CONTROL) {
if (engineConfiguration->idleMode == IM_AUTO) {
// see also tsOutputChannels->idlePosition
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->postState(&tsOutputChannels, 1000000);
tsOutputChannels.debugIntField4 = engine->engineState.idle.idleState;
} else {
tsOutputChannels.debugFloatField1 = iacPosition;
extern StepperMotor iacMotor;
tsOutputChannels.debugIntField1 = iacMotor.getTargetPosition();
}
}
#endif /* EFI_TUNER_STUDIO */
engine->engineState.idle.currentIdlePosition = iacPosition;
return iacPosition;
}
void IdleController::update() {
float position = getIdlePosition();
applyIACposition(position PASS_ENGINE_PARAMETER_SUFFIX);
}
IdleController idleControllerInstance;
void updateIdleControl()
{
idleControllerInstance.update();
}
float getIdleTimingAdjustment(int rpm) {
return idleControllerInstance.getIdleTimingAdjustment(rpm);
}
bool isIdling() {
return idleControllerInstance.isIdling();
}
static void applyPidSettings(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->updateFactors(engineConfiguration->idleRpmPid.pFactor, engineConfiguration->idleRpmPid.iFactor, engineConfiguration->idleRpmPid.dFactor);
iacPidMultMap.init(CONFIG(iacPidMultTable), CONFIG(iacPidMultLoadBins), CONFIG(iacPidMultRpmBins));
}
void setDefaultIdleParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
engineConfiguration->idleRpmPid.pFactor = 0.1f;
engineConfiguration->idleRpmPid.iFactor = 0.05f;
engineConfiguration->idleRpmPid.dFactor = 0.0f;
engineConfiguration->idlerpmpid_iTermMin = -20;
engineConfiguration->idlerpmpid_iTermMax = 20;
// Good starting point is 10 degrees per 100 rpm, aka 0.1 deg/rpm
CONFIG(idleTimingPid).pFactor = 0.1f;
CONFIG(idleTimingPid).iFactor = 0;
CONFIG(idleTimingPid).dFactor = 0;
// Allow +- 10 degrees adjustment
CONFIG(idleTimingPid).minValue = -10;
CONFIG(idleTimingPid).minValue = 10;
// Idle region is target + 100 RPM
CONFIG(idlePidRpmUpperLimit) = 100;
}
#if ! EFI_UNIT_TEST
void onConfigurationChangeIdleCallback(engine_configuration_s *previousConfiguration) {
shouldResetPid = !getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->isSame(&previousConfiguration->idleRpmPid);
mustResetPid = shouldResetPid;
}
void setTargetIdleRpm(int value) {
setTargetRpmCurve(value PASS_ENGINE_PARAMETER_SUFFIX);
efiPrintf("target idle RPM %d", value);
showIdleInfo();
}
void setIdleOffset(float value) {
engineConfiguration->idleRpmPid.offset = value;
showIdleInfo();
}
void setIdlePFactor(float value) {
engineConfiguration->idleRpmPid.pFactor = value;
applyPidSettings();
showIdleInfo();
}
void setIdleIFactor(float value) {
engineConfiguration->idleRpmPid.iFactor = value;
applyPidSettings();
showIdleInfo();
}
void setIdleDFactor(float value) {
engineConfiguration->idleRpmPid.dFactor = value;
applyPidSettings();
showIdleInfo();
}
/**
* Idle test would activate the solenoid for three seconds
*/
void startIdleBench(void) {
timeToStopIdleTest = getTimeNowUs() + MS2US(3000); // 3 seconds
efiPrintf("idle valve bench test");
showIdleInfo();
}
#endif /* EFI_UNIT_TEST */
void startIdleThread(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
INJECT_ENGINE_REFERENCE(&idleControllerInstance);
idleControllerInstance.init(&CONFIG(idleTimingPid));
INJECT_ENGINE_REFERENCE(&industrialWithOverrideIdlePid);
ENGINE(idleController) = &idleControllerInstance;
getIdlePid(PASS_ENGINE_PARAMETER_SIGNATURE)->initPidClass(&engineConfiguration->idleRpmPid);
#if ! EFI_UNIT_TEST
// todo: we still have to explicitly init all hardware on start in addition to handling configuration change via
// 'applyNewHardwareSettings' todo: maybe unify these two use-cases?
initIdleHardware(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif /* EFI_UNIT_TEST */
DISPLAY_STATE(Engine)
DISPLAY_TEXT(Idle_State);
engine->engineState.idle.DISPLAY_FIELD(idleState) = INIT;
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(Base_Position);
engine->engineState.idle.DISPLAY_FIELD(baseIdlePosition) = -100.0f;
DISPLAY_TEXT(Position_with_Adjustments);
engine->engineState.idle.DISPLAY_FIELD(currentIdlePosition) = -100.0f;
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(EOL);
DISPLAY_SENSOR(TPS);
DISPLAY_TEXT(EOL);
DISPLAY_TEXT(Throttle_Up_State);
DISPLAY(DISPLAY_FIELD(throttlePedalUpState));
DISPLAY(DISPLAY_CONFIG(throttlePedalUpPin));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_IF(isAutomaticIdle))
DISPLAY_STATE(idle_pid)
DISPLAY_TEXT(Output);
DISPLAY(DISPLAY_FIELD(output));
DISPLAY_TEXT(iTerm);
DISPLAY(DISPLAY_FIELD(iTerm));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Settings);
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_PFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_IFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_DFACTOR));
DISPLAY(DISPLAY_CONFIG(IDLERPMPID_OFFSET));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(ETB_Idle);
DISPLAY_STATE(Engine)
DISPLAY(DISPLAY_FIELD(etbIdleAddition));
/* DISPLAY_ELSE */
DISPLAY_TEXT(Manual_idle_control);
/* DISPLAY_ENDIF */
#if ! EFI_UNIT_TEST
// this is neutral/no gear switch input. on Miata it's wired both to clutch pedal and neutral in gearbox
// this switch is not used yet
if (isBrainPinValid(CONFIG(clutchDownPin))) {
efiSetPadMode("clutch down switch", CONFIG(clutchDownPin),
getInputMode(CONFIG(clutchDownPinMode)));
}
if (isBrainPinValid(CONFIG(clutchUpPin))) {
efiSetPadMode("clutch up switch", CONFIG(clutchUpPin),
getInputMode(CONFIG(clutchUpPinMode)));
}
if (isBrainPinValid(CONFIG(throttlePedalUpPin))) {
efiSetPadMode("throttle pedal up switch", CONFIG(throttlePedalUpPin),
getInputMode(CONFIG(throttlePedalUpPinMode)));
}
if (isBrainPinValid(engineConfiguration->brakePedalPin)) {
#if EFI_PROD_CODE
efiSetPadMode("brake pedal switch", engineConfiguration->brakePedalPin,
getInputMode(engineConfiguration->brakePedalPinMode));
#endif /* EFI_PROD_CODE */
}
addConsoleAction("idleinfo", showIdleInfo);
addConsoleActionII("blipidle", blipIdle);
// split this whole file into manual controller and auto controller? move these commands into the file
// which would be dedicated to just auto-controller?
addConsoleAction("idlebench", startIdleBench);
#endif /* EFI_UNIT_TEST */
applyPidSettings(PASS_ENGINE_PARAMETER_SIGNATURE);
}
#endif /* EFI_IDLE_CONTROL */