rusefi-1/firmware/controllers/sensors/AemXSeriesLambda.cpp

158 lines
3.9 KiB
C++

#include "pch.h"
#if EFI_CAN_SUPPORT || EFI_UNIT_TEST
#include "AemXSeriesLambda.h"
static constexpr uint32_t aem_base = 0x180;
static constexpr uint32_t rusefi_base = 0x190;
AemXSeriesWideband::AemXSeriesWideband(uint8_t sensorIndex, SensorType type)
: CanSensorBase(
0, // ID passed here doesn't matter since we override acceptFrame
type,
MS2NT(21) // sensor transmits at 100hz, allow a frame to be missed
)
, m_sensorIndex(sensorIndex)
{}
bool AemXSeriesWideband::acceptFrame(const CANRxFrame& frame) const {
if (frame.DLC != 8) {
return false;
}
uint32_t id = CAN_ID(frame);
// 0th sensor is 0x180, 1st sensor is 0x181, etc
uint32_t aemXSeriesId = aem_base + m_sensorIndex;
// 0th sensor is 0x190 and 0x191, 1st sensor is 0x192 and 0x193
uint32_t rusefiBaseId = rusefi_base + 2 * m_sensorIndex;
return
id == aemXSeriesId ||
id == rusefiBaseId ||
id == rusefiBaseId + 1;
}
void AemXSeriesWideband::decodeFrame(const CANRxFrame& frame, efitick_t nowNt) {
int32_t id = CAN_ID(frame);
// accept frame has already guaranteed that this message belongs to us
// We just have to check if it's AEM or rusEFI
if (id < rusefi_base) {
decodeAemXSeries(frame, nowNt);
} else {
// rusEFI custom format
if ((id & 0x1) != 0) {
// low bit is set, this is the "diag" frame
decodeRusefiDiag(frame);
} else {
// low bit not set, this is standard frame
decodeRusefiStandard(frame, nowNt);
}
}
}
void AemXSeriesWideband::decodeAemXSeries(const CANRxFrame& frame, efitick_t nowNt) {
// reports in 0.0001 lambda per LSB
uint16_t lambdaInt = SWAP_UINT16(frame.data16[0]);
float lambdaFloat = 0.0001f * lambdaInt;
// This bit is a reserved bit on AEM - but is set on rusEfi's controller
bool isRusefiController = frame.data8[7] & 0x80;
#if EFI_TUNER_STUDIO
// rusEfi controller sends some extra diagnostic data about its internal workings
if (isRusefiController && engineConfiguration->debugMode == DBG_RUSEFI_WIDEBAND) {
float pumpDuty = frame.data8[2] / 255.0f;
float nernstVoltage = frame.data8[4] / 200.0f;
engine->outputChannels.debugFloatField1 = pumpDuty;
engine->outputChannels.debugFloatField3 = nernstVoltage;
}
if (isRusefiController) {
float wbEsr = frame.data8[3] * 4;
// TODO: convert ESR to temperature
engine->outputChannels.wbTemperature[m_sensorIndex] = wbEsr;
// TODO: decode heater duty
engine->outputChannels.wbHeaterDuty[m_sensorIndex] = 0;
}
#endif
// bit 6 indicates sensor fault
bool sensorFault = frame.data8[7] & 0x40;
if (sensorFault) {
invalidate();
return;
}
// bit 7 indicates valid
bool valid = frame.data8[6] & 0x80;
if (!valid) {
invalidate();
return;
}
setValidValue(lambdaFloat, nowNt);
}
// TODO: include rusEFI wideband file directly
namespace wbo
{
struct StandardData
{
uint8_t Version;
uint8_t Valid;
uint16_t Lambda;
uint16_t TemperatureC;
uint16_t pad;
};
struct DiagData
{
uint16_t Esr;
uint16_t NernstDc;
uint8_t PumpDuty;
uint8_t Status;
uint8_t HeaterDuty;
uint8_t pad;
};
} // namespace wbo
void AemXSeriesWideband::decodeRusefiStandard(const CANRxFrame& frame, efitick_t nowNt) {
auto data = reinterpret_cast<const wbo::StandardData*>(&frame.data8[0]);
// TODO: enforce version check
//bool versionValid = data->Version != RUSEFI_WIDEBAND_VERSION;
float lambda = 0.0001f * data->Lambda;
engine->outputChannels.wbTemperature[m_sensorIndex] = data->TemperatureC;
bool valid = data->Valid != 0;
if (valid) {
setValidValue(lambda, nowNt);
} else {
invalidate();
}
}
void AemXSeriesWideband::decodeRusefiDiag(const CANRxFrame& frame) {
auto data = reinterpret_cast<const wbo::DiagData*>(&frame.data8[0]);
engine->outputChannels.wbHeaterDuty[m_sensorIndex] = data->HeaterDuty / 255.0f;
if (m_sensorIndex == 0 || engineConfiguration->debugMode == DBG_RUSEFI_WIDEBAND) {
engine->outputChannels.debugFloatField1 = data->PumpDuty / 255.0f;
engine->outputChannels.debugFloatField3 = data->NernstDc / 1000.0f;
}
}
#endif