rusefi-1/firmware/hw_layer/can_hw.cpp

278 lines
7.3 KiB
C++

/**
* @file can_hw.cpp
* @brief CAN bus low level code
*
* todo: this file should be split into two - one for CAN transport level ONLY and
* another one with actual messages
*
* @date Dec 11, 2013
* @author Andrey Belomutskiy, (c) 2012-2014
*/
#include "main.h"
#include "can_hw.h"
#include "string.h"
#if EFI_PROD_CODE
#include "pin_repository.h"
#include "engine_state.h"
#include "can_header.h"
#include "engine_configuration.h"
#include "vehicle_speed.h"
#endif /* EFI_PROD_CODE */
#if EFI_CAN_SUPPORT || defined(__DOXYGEN__)
EXTERN_ENGINE
;
static int canReadCounter = 0;
static int can_write_ok = 0;
static int can_write_not_ok = 0;
static Logging logger;
static THD_WORKING_AREA(canTreadStack, UTILITY_THREAD_STACK_SIZE);
/*
* 500KBaud
* automatic wakeup
* automatic recover from abort mode
* See section 22.7.7 on the STM32 reference manual.
*
* speed = 42000000 / (BRP + 1) / (1 + TS1 + 1 + TS2 + 1)
* 42000000 / 7 / 12 = 500000
*
*
*/
static const CANConfig canConfig = {
CAN_MCR_ABOM | CAN_MCR_AWUM | CAN_MCR_TXFP,
CAN_BTR_SJW(0) | CAN_BTR_TS2(1) | CAN_BTR_TS1(8) | CAN_BTR_BRP(6) };
static CANRxFrame rxBuffer;
static CANTxFrame txmsg;
// todo: we would need a data structure here
static int engine_rpm = 0;
static float engine_clt = 0;
static int rand = 1212321311;
//static CANDriver *getCanDevice() {
// if(board)
//}
static void printPacket(CANRxFrame *rx) {
// scheduleMsg(&logger, "CAN FMI %x", rx->FMI);
// scheduleMsg(&logger, "TIME %x", rx->TIME);
scheduleMsg(&logger, "SID %x/%x %x %x %x %x %x %x %x %x", rx->SID, rx->DLC, rx->data8[0], rx->data8[1],
rx->data8[2], rx->data8[3], rx->data8[4], rx->data8[5], rx->data8[6], rx->data8[7]);
if (rx->SID == CAN_BMW_E46_CLUSTER_STATUS) {
int odometerKm = 10 * (rx->data8[1] << 8) + rx->data8[0];
int odometerMi = (int) (odometerKm * 0.621371);
scheduleMsg(&logger, "GOT odometerKm %d", odometerKm);
scheduleMsg(&logger, "GOT odometerMi %d", odometerMi);
int timeValue = (rx->data8[4] << 8) + rx->data8[3];
scheduleMsg(&logger, "GOT time %d", timeValue);
}
}
static void setShortValue(CANTxFrame *txmsg, int value, int offset) {
txmsg->data8[offset] = value;
txmsg->data8[offset + 1] = value >> 8;
}
static void commonTxInit(int eid) {
memset(&txmsg, 0, sizeof(txmsg));
txmsg.IDE = CAN_IDE_STD;
txmsg.EID = eid;
txmsg.RTR = CAN_RTR_DATA;
txmsg.DLC = 8;
}
static void sendMessage2(int size) {
txmsg.DLC = size;
msg_t result = canTransmit(&EFI_CAN_DEVICE, CAN_ANY_MAILBOX, &txmsg, TIME_INFINITE);
if (result == RDY_OK) {
can_write_ok++;
} else {
can_write_not_ok++;
}
}
static void sendMessage() {
sendMessage2(8);
}
#if EFI_PROD_CODE
static void canDashboardBMW(void) {
//BMW Dashboard
commonTxInit(CAN_BMW_E46_SPEED);
setShortValue(&txmsg, 10 * 8, 1);
sendMessage();
commonTxInit(CAN_BMW_E46_RPM);
setShortValue(&txmsg, (int) (engine_rpm * 6.4), 2);
sendMessage();
commonTxInit(CAN_BMW_E46_DME2);
setShortValue(&txmsg, (int) ((engine_clt + 48.373) / 0.75), 1);
sendMessage();
}
static void canMazdaRX8(void) {
rand = rand * 17;
// commonTxInit(0x300);
// sendMessage2(0);
commonTxInit(CAN_MAZDA_RX_RPM_SPEED);
float kph = getVehicleSpeed();
setShortValue(&txmsg, SWAP_UINT16(engine_rpm * 4), 0);
setShortValue(&txmsg, 0xFFFF, 2);
setShortValue(&txmsg, SWAP_UINT16((int )(100 * kph + 10000)), 4);
setShortValue(&txmsg, 0, 6);
sendMessage();
commonTxInit(CAN_MAZDA_RX_STATUS_2);
txmsg.data8[0] = 0xFE; //Unknown
txmsg.data8[1] = 0xFE; //Unknown
txmsg.data8[2] = 0xFE; //Unknown
txmsg.data8[3] = 0x34; //DSC OFF in combo with byte 5 Live data only seen 0x34
txmsg.data8[4] = 0x00; // B01000000; // Brake warning B00001000; //ABS warning
txmsg.data8[5] = 0x40; // TCS in combo with byte 3
txmsg.data8[6] = 0x00; // Unknown
txmsg.data8[7] = 0x00; // Unused
commonTxInit(CAN_MAZDA_RX_STATUS_2);
txmsg.data8[0] = 0x98; //temp gauge //~170 is red, ~165 last bar, 152 centre, 90 first bar, 92 second bar
txmsg.data8[1] = 0x00; // something to do with trip meter 0x10, 0x11, 0x17 increments by 0.1 miles
txmsg.data8[2] = 0x00; // unknown
txmsg.data8[3] = 0x00; //unknown
txmsg.data8[4] = 0x01; //Oil Pressure (not really a gauge)
txmsg.data8[5] = 0x00; //check engine light
txmsg.data8[6] = 0x00; //Coolant, oil and battery
txmsg.data8[7] = 0x00; //unused
sendMessage();
}
static void canDashboardFiat(void) {
//Fiat Dashboard
commonTxInit(CAN_FIAT_MOTOR_INFO);
setShortValue(&txmsg, (int) (engine_clt - 40), 3); //Coolant Temp
setShortValue(&txmsg, engine_rpm / 32, 6); //RPM
sendMessage();
}
static void canDashboardVAG(void) {
//VAG Dashboard
commonTxInit(CAN_VAG_RPM);
setShortValue(&txmsg, engine_rpm * 4, 2); //RPM
sendMessage();
commonTxInit(CAN_VAG_CLT);
setShortValue(&txmsg, (int) ((engine_clt + 48.373) / 0.75), 1); //Coolant Temp
sendMessage();
}
static void canInfoNBCBroadcast(can_nbc_e typeOfNBC) {
switch (typeOfNBC) {
case CAN_BUS_NBC_BMW:
canDashboardBMW();
break;
case CAN_BUS_NBC_FIAT:
canDashboardFiat();
break;
case CAN_BUS_NBC_VAG:
canDashboardVAG();
break;
case CAN_BUS_MAZDA_RX8:
canMazdaRX8();
break;
default:
break;
}
}
static void canRead(void) {
scheduleMsg(&logger, "waiting for CAN");
canReceive(&EFI_CAN_DEVICE, CAN_ANY_MAILBOX, &rxBuffer, TIME_INFINITE);
canReadCounter++;
printPacket(&rxBuffer);
}
static void writeStateToCan(void) {
engine_rpm = getRpm();
engine_clt = 123; //getCoolantTemperature(engine);
canInfoNBCBroadcast(engineConfiguration->canNbcType);
}
static msg_t canThread(void *arg) {
chRegSetThreadName("CAN");
while (true) {
if (engineConfiguration->canWriteEnabled)
writeStateToCan();
if (engineConfiguration->canReadEnabled)
canRead(); // todo: since this is a blocking operation, do we need a separate thread for 'write'?
if (engineConfiguration->canSleepPeriod < 10) {
warning(OBD_PCM_Processor_Fault, "%d too low CAN", engineConfiguration->canSleepPeriod);
engineConfiguration->canSleepPeriod = 50;
}
chThdSleepMilliseconds(engineConfiguration->canSleepPeriod);
}
#if defined __GNUC__
return -1;
#endif
}
static void canInfo(void) {
scheduleMsg(&logger, "CAN TX %s", hwPortname(boardConfiguration->canTxPin));
scheduleMsg(&logger, "CAN RX %s", hwPortname(boardConfiguration->canRxPin));
scheduleMsg(&logger, "type=%d canReadEnabled=%s canWriteEnabled=%s period=%d", engineConfiguration->canNbcType,
boolToString(engineConfiguration->canReadEnabled), boolToString(engineConfiguration->canWriteEnabled),
engineConfiguration->canSleepPeriod);
scheduleMsg(&logger, "CAN rx count %d/tx ok %d/tx not ok %d", canReadCounter, can_write_ok, can_write_not_ok);
}
#endif /* EFI_PROD_CODE */
void initCan(void) {
#if EFI_PROD_CODE
if (!engineConfiguration->isCanEnabled)
return;
#endif /* EFI_PROD_CODE */
initLogging(&logger, "CAN driver");
#if STM32_CAN_USE_CAN2
// CAN1 is required for CAN2
canStart(&CAND1, &canConfig);
canStart(&CAND2, &canConfig);
#else
canStart(&CAND1, &canConfig);
#endif
canStart(&EFI_CAN_DEVICE, &canConfig);
#if EFI_PROD_CODE
chThdCreateStatic(canTreadStack, sizeof(canTreadStack), NORMALPRIO, (tfunc_t) canThread, NULL);
mySetPadMode2("CAN TX", boardConfiguration->canTxPin, PAL_MODE_ALTERNATE(EFI_CAN_TX_AF));
mySetPadMode2("CAN RX", boardConfiguration->canRxPin, PAL_MODE_ALTERNATE(EFI_CAN_RX_AF));
addConsoleAction("caninfo", canInfo);
#endif /* EFI_PROD_CODE */
}
#endif /* EFI_CAN_SUPPORT */