rusefi-1/firmware/hw_layer/ports/kinetis/mpu_util.cpp

304 lines
7.0 KiB
C++

/**
* @file mpu_util.cpp
*
* @date Jul 27, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
* @author andreika <prometheus.pcb@gmail.com>
*/
#include "pch.h"
#if EFI_PROD_CODE
#include "mpu_util.h"
#include "flash_int.h"
#include "os_util.h"
void baseMCUInit(void) {
}
void _unhandled_exception(void) {
/*lint -restore*/
chDbgPanic3("_unhandled_exception", __FILE__, __LINE__);
while (true) {
}
}
void DebugMonitorVector(void) {
chDbgPanic3("DebugMonitorVector", __FILE__, __LINE__);
while (TRUE)
;
}
void UsageFaultVector(void) {
chDbgPanic3("UsageFaultVector", __FILE__, __LINE__);
while (TRUE)
;
}
void BusFaultVector(void) {
chDbgPanic3("BusFaultVector", __FILE__, __LINE__);
while (TRUE) {
}
}
void HardFaultVector(void) {
while (TRUE) {
}
}
#if HAL_USE_SPI || defined(__DOXYGEN__)
bool isSpiInitialized[5] = { false, false, false, false, false };
static int getSpiAf(SPIDriver *driver) {
#if STM32_SPI_USE_SPI1
if (driver == &SPID1) {
return EFI_SPI1_AF;
}
#endif
#if STM32_SPI_USE_SPI2
if (driver == &SPID2) {
return EFI_SPI2_AF;
}
#endif
#if STM32_SPI_USE_SPI3
if (driver == &SPID3) {
return EFI_SPI3_AF;
}
#endif
return -1;
}
brain_pin_e getMisoPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return engineConfiguration->spi1misoPin;
case SPI_DEVICE_2:
return engineConfiguration->spi2misoPin;
case SPI_DEVICE_3:
return engineConfiguration->spi3misoPin;
default:
break;
}
return GPIO_UNASSIGNED;
}
brain_pin_e getMosiPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return engineConfiguration->spi1mosiPin;
case SPI_DEVICE_2:
return engineConfiguration->spi2mosiPin;
case SPI_DEVICE_3:
return engineConfiguration->spi3mosiPin;
default:
break;
}
return GPIO_UNASSIGNED;
}
brain_pin_e getSckPin(spi_device_e device) {
switch(device) {
case SPI_DEVICE_1:
return engineConfiguration->spi1sckPin;
case SPI_DEVICE_2:
return engineConfiguration->spi2sckPin;
case SPI_DEVICE_3:
return engineConfiguration->spi3sckPin;
default:
break;
}
return GPIO_UNASSIGNED;
}
void turnOnSpi(spi_device_e device) {
if (isSpiInitialized[device])
return; // already initialized
isSpiInitialized[device] = true;
if (device == SPI_DEVICE_1) {
// todo: introduce a nice structure with all fields for same SPI
#if STM32_SPI_USE_SPI1
// scheduleMsg(&logging, "Turning on SPI1 pins");
initSpiModule(&SPID1, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi1SckMode,
engineConfiguration->spi1MosiMode,
engineConfiguration->spi1MisoMode);
#endif /* STM32_SPI_USE_SPI1 */
}
if (device == SPI_DEVICE_2) {
#if STM32_SPI_USE_SPI2
// scheduleMsg(&logging, "Turning on SPI2 pins");
initSpiModule(&SPID2, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi2SckMode,
engineConfiguration->spi2MosiMode,
engineConfiguration->spi2MisoMode);
#endif /* STM32_SPI_USE_SPI2 */
}
if (device == SPI_DEVICE_3) {
#if STM32_SPI_USE_SPI3
// scheduleMsg(&logging, "Turning on SPI3 pins");
initSpiModule(&SPID3, getSckPin(device),
getMisoPin(device),
getMosiPin(device),
engineConfiguration->spi3SckMode,
engineConfiguration->spi3MosiMode,
engineConfiguration->spi3MisoMode);
#endif /* STM32_SPI_USE_SPI3 */
}
}
void initSpiModule(SPIDriver *driver, brain_pin_e sck, brain_pin_e miso,
brain_pin_e mosi,
int sckMode,
int mosiMode,
int misoMode) {
/**
* See https://github.com/rusefi/rusefi/pull/664/
*
* Info on the silicon defect can be found in this document, section 2.5.2:
* https://www.st.com/content/ccc/resource/technical/document/errata_sheet/0a/98/58/84/86/b6/47/a2/DM00037591.pdf/files/DM00037591.pdf/jcr:content/translations/en.DM00037591.pdf
*/
efiSetPadMode("SPI clock", sck, PAL_MODE_ALTERNATE(getSpiAf(driver)) | sckMode | PAL_STM32_OSPEED_HIGHEST);
efiSetPadMode("SPI master out", mosi, PAL_MODE_ALTERNATE(getSpiAf(driver)) | mosiMode | PAL_STM32_OSPEED_HIGHEST);
efiSetPadMode("SPI master in ", miso, PAL_MODE_ALTERNATE(getSpiAf(driver)) | misoMode | PAL_STM32_OSPEED_HIGHEST);
}
void initSpiCs(SPIConfig *spiConfig, brain_pin_e csPin) {
spiConfig->end_cb = NULL;
ioportid_t port = getHwPort("spi", csPin);
ioportmask_t pin = getHwPin("spi", csPin);
spiConfig->ssport = port;
spiConfig->sspad = pin;
// CS is controlled inside 'hal_spi_lld' driver using both software and hardware methods.
//efiSetPadMode("chip select", csPin, PAL_MODE_OUTPUT_OPENDRAIN);
}
#endif /* HAL_USE_SPI */
BOR_Level_t BOR_Get(void) {
return BOR_Level_None;
}
BOR_Result_t BOR_Set(BOR_Level_t BORValue) {
return BOR_Result_Ok;
}
#if EFI_CAN_SUPPORT || defined(__DOXYGEN__)
static bool isValidCan1RxPin(brain_pin_e pin) {
return pin == GPIOA_11 || pin == GPIOB_8 || pin == GPIOD_0;
}
static bool isValidCan1TxPin(brain_pin_e pin) {
return pin == GPIOA_12 || pin == GPIOB_9 || pin == GPIOD_1;
}
static bool isValidCan2RxPin(brain_pin_e pin) {
return pin == GPIOB_5 || pin == GPIOB_12;
}
static bool isValidCan2TxPin(brain_pin_e pin) {
return pin == GPIOB_6 || pin == GPIOB_13;
}
bool isValidCanTxPin(brain_pin_e pin) {
return isValidCan1TxPin(pin) || isValidCan2TxPin(pin);
}
bool isValidCanRxPin(brain_pin_e pin) {
return isValidCan1RxPin(pin) || isValidCan2RxPin(pin);
}
CANDriver* detectCanDevice(brain_pin_e pinRx, brain_pin_e pinTx) {
if (isValidCan1RxPin(pinRx) && isValidCan1TxPin(pinTx))
return &CAND1;
if (isValidCan2RxPin(pinRx) && isValidCan2TxPin(pinTx))
return &CAND2;
return NULL;
}
#endif /* EFI_CAN_SUPPORT */
bool allowFlashWhileRunning() {
return false;
}
size_t flashSectorSize(flashsector_t sector) {
// sectors 0..11 are the 1st memory bank (1Mb), and 12..23 are the 2nd (the same structure).
if (sector <= 3 || (sector >= 12 && sector <= 15))
return 16 * 1024;
else if (sector == 4 || sector == 16)
return 64 * 1024;
else if ((sector >= 5 && sector <= 11) || (sector >= 17 && sector <= 23))
return 128 * 1024;
return 0;
}
/**
* Flex Non Volatile Memory is faster than flash
* It also has smaller pages so it takes less time to erase
*
* There is no remote access to FlexNVM meaning that we cannot erase settings externally
*/
uintptr_t getFlashAddrFirstCopy() {
return 0x10000000;
}
uintptr_t getFlashAddrSecondCopy() {
return 0x10008000;
}
/*static*/ hardware_pwm* hardware_pwm::tryInitPin(const char*, brain_pin_e, float, float) {
// TODO: implement me!
return nullptr;
}
void portInitAdc() {
// Init slow ADC
adcStart(&ADCD1, NULL);
// Init fast ADC (MAP sensor)
adcStart(&ADCD2, NULL);
}
float getMcuTemperature() {
// TODO: implement me!
return 0;
}
bool readSlowAnalogInputs(adcsample_t* convertedSamples) {
// TODO: implement me!
return true;
}
static constexpr FastAdcToken invalidToken = (FastAdcToken)(-1);
FastAdcToken enableFastAdcChannel(const char*, adc_channel_e channel) {
if (!isAdcChannelValid(channel)) {
return invalidToken;
}
// TODO: implement me!
return invalidToken;
}
adcsample_t getFastAdc(FastAdcToken token) {
if (token == invalidToken) {
return 0;
}
// TODO: implement me!
return 0;
}
#endif /* EFI_PROD_CODE */