rusefi-1/firmware/controllers/actuators/electronic_throttle.h

117 lines
3.6 KiB
C++

/**
* @file electronic_throttle.h
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
/**
* Hard code ETB update speed.
* Since this is a safety critical system with no real reason for a user to ever need to change the update rate,
* it's locked to 500hz, along with the ADC.
* https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem
*/
#define ETB_LOOP_FREQUENCY 500
#define DEFAULT_ETB_PWM_FREQUENCY 800
#include "engine.h"
#include "closed_loop_controller.h"
#include "expected.h"
class DcMotor;
class Logging;
class IEtbController : public ClosedLoopController<percent_t, percent_t> {
public:
DECLARE_ENGINE_PTR;
virtual void init(DcMotor *motor, int ownIndex, pid_s *pidParameters, const ValueProvider3D* pedalMap) = 0;
virtual void reset() = 0;
virtual void setIdlePosition(percent_t pos) = 0;
virtual void start() = 0;
virtual void autoCalibrateTps() = 0;
};
class EtbController : public IEtbController {
public:
void init(DcMotor *motor, int ownIndex, pid_s *pidParameters, const ValueProvider3D* pedalMap) override;
void setIdlePosition(percent_t pos) override;
void reset() override;
void start() override {}
void update(efitick_t nowNt);
// Called when the configuration may have changed. Controller will
// reset if necessary.
void onConfigurationChange(pid_s* previousConfiguration);
// Print this throttle's status.
void showStatus(Logging* logger);
// Helpers for individual parts of throttle control
expected<percent_t> observePlant() const override;
expected<percent_t> getSetpoint() const override;
expected<percent_t> getOpenLoop(percent_t target) const override;
expected<percent_t> getClosedLoop(percent_t setpoint, percent_t target) override;
expected<percent_t> getClosedLoopAutotune(percent_t actualThrottlePosition);
void setOutput(expected<percent_t> outputValue) override;
// Used to inspect the internal PID controller's state
const pid_state_s* getPidState() const { return &m_pid; };
// Use the throttle to automatically calibrate the relevant throttle position sensor(s).
void autoCalibrateTps() override;
protected:
// This is set if an automatic TPS calibration should be run
bool m_isAutocal = false;
int getMyIndex() const { return m_myIndex; }
DcMotor* getMotor() { return m_motor; }
private:
int m_myIndex = 0;
DcMotor *m_motor = nullptr;
Pid m_pid;
bool m_shouldResetPid = false;
// Pedal -> target map
const ValueProvider3D* m_pedalMap = nullptr;
float m_idlePosition = 0;
// Autotune helpers
bool m_lastIsPositive = false;
efitick_t m_cycleStartTime = 0;
float m_minCycleTps = 0;
float m_maxCycleTps = 0;
// Autotune measured parameters: gain and ultimate period
// These are set to correct order of magnitude starting points
// so we converge more quickly on the correct values
float m_a = 8;
float m_tu = 0.1f;
uint8_t m_autotuneCounter = 0;
uint8_t m_autotuneCurrentParam = 0;
};
void initElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE);
void doInitElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE);
void setEtbIdlePosition(percent_t pos DECLARE_ENGINE_PARAMETER_SUFFIX);
void setDefaultEtbBiasCurve(DECLARE_CONFIG_PARAMETER_SIGNATURE);
void setDefaultEtbParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE);
void setBoschVNH2SP30Curve(DECLARE_CONFIG_PARAMETER_SIGNATURE);
void setEtbPFactor(float value);
void setEtbIFactor(float value);
void setEtbDFactor(float value);
void setEtbOffset(int value);
void setThrottleDutyCycle(percent_t level);
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration);
void unregisterEtbPins();
void etbAutocal(size_t throttleIndex);