rusefi-1/firmware/controllers/core/fsio_impl.cpp

687 lines
22 KiB
C++

/**
* @file fsio_impl.cpp
* @brief FSIO as it's used for GPIO
*
* set debug_mode 23
* https://rusefi.com/wiki/index.php?title=Manual:Flexible_Logic
*
* @date Oct 5, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*/
#include "global.h"
#if EFI_FSIO || defined(__DOXYGEN__)
#include "fsio_impl.h"
#include "allsensors.h"
#include "rpm_calculator.h"
#include "efiGpio.h"
/**
* in case of zero frequency pin is operating as simple on/off. '1' for ON and '0' for OFF
*
*/
#define NO_PWM 0
// see useFSIO15ForIdleRpmAdjustment
#define MAGIC_OFFSET_FOR_IDLE_TARGET_RPM 14
// see useFSIO16ForTimingAdjustment
#define MAGIC_OFFSET_FOR_TIMING_FSIO 15
fsio8_Map3D_f32t fsioTable1("fsio#1");
fsio8_Map3D_u8t fsioTable2("fsio#2");
fsio8_Map3D_u8t fsioTable3("fsio#3");
fsio8_Map3D_u8t fsioTable4("fsio#4");
extern pin_output_mode_e DEFAULT_OUTPUT;
/**
* Here we define all rusEfi-specific methods
*/
static LENameOrdinalPair leRpm(LE_METHOD_RPM, "rpm");
static LENameOrdinalPair leTps(LE_METHOD_TPS, "tps");
static LENameOrdinalPair leMaf(LE_METHOD_MAF, "maf");
static LENameOrdinalPair leMap(LE_METHOD_MAP, "map");
static LENameOrdinalPair leVBatt(LE_METHOD_VBATT, "vbatt");
static LENameOrdinalPair leFan(LE_METHOD_FAN, "fan");
static LENameOrdinalPair leCoolant(LE_METHOD_COOLANT, "coolant");
static LENameOrdinalPair leIsCoolantBroken(LE_METHOD_IS_COOLANT_BROKEN, "is_clt_broken");
static LENameOrdinalPair leAcToggle(LE_METHOD_AC_TOGGLE, "ac_on_switch");
static LENameOrdinalPair leFanOnSetting(LE_METHOD_FAN_ON_SETTING, "fan_on_setting");
static LENameOrdinalPair leFanOffSetting(LE_METHOD_FAN_OFF_SETTING, "fan_off_setting");
static LENameOrdinalPair leTimeSinceBoot(LE_METHOD_TIME_SINCE_BOOT, "time_since_boot");
static LENameOrdinalPair leFsioSetting(LE_METHOD_FSIO_SETTING, "fsio_setting");
static LENameOrdinalPair leFsioTable(LE_METHOD_FSIO_TABLE, "fsio_table");
static LENameOrdinalPair leFsioAnalogInput(LE_METHOD_FSIO_ANALOG_INPUT, "fsio_analog_input");
static LENameOrdinalPair leFsioDigitalInput(LE_METHOD_FSIO_DIGITAL_INPUT, "fsio_digital_input");
static LENameOrdinalPair leKnock(LE_METHOD_KNOCK, "knock");
static LENameOrdinalPair leIntakeVVT(LE_METHOD_INTAKE_VVT, "ivvt");
static LENameOrdinalPair leExhaustVVT(LE_METHOD_EXHAUST_VVT, "evvt");
static LENameOrdinalPair leCrankingRpm(LE_METHOD_CRANKING_RPM, "cranking_rpm");
static LENameOrdinalPair leStartupFuelPumpDuration(LE_METHOD_STARTUP_FUEL_PUMP_DURATION, "startup_fuel_pump_duration");
static LENameOrdinalPair leInShutdown(LE_METHOD_IN_SHUTDOWN, "in_shutdown");
#define LE_EVAL_POOL_SIZE 32
extern EnginePins enginePins;
static LECalculator evalCalc;
static LEElement evalPoolElements[LE_EVAL_POOL_SIZE];
static LEElementPool evalPool(evalPoolElements, LE_EVAL_POOL_SIZE);
#define SYS_ELEMENT_POOL_SIZE 128
#define UD_ELEMENT_POOL_SIZE 128
static LEElement sysElements[SYS_ELEMENT_POOL_SIZE] CCM_OPTIONAL;
LEElementPool sysPool(sysElements, SYS_ELEMENT_POOL_SIZE);
static LEElement userElements[UD_ELEMENT_POOL_SIZE] CCM_OPTIONAL;
LEElementPool userPool(userElements, UD_ELEMENT_POOL_SIZE);
static LEElement * fsioLogics[FSIO_COMMAND_COUNT] CCM_OPTIONAL;
static LEElement * acRelayLogic;
static LEElement * fuelPumpLogic;
static LEElement * radiatorFanLogic;
static LEElement * alternatorLogic;
#if EFI_MAIN_RELAY_CONTROL || defined(__DOXYGEN__)
static LEElement * mainRelayLogic;
#endif /* EFI_MAIN_RELAY_CONTROL */
EXTERN_ENGINE
;
#if EFI_PROD_CODE || EFI_SIMULATOR
static Logging *logger;
float getEngineValue(le_action_e action DECLARE_ENGINE_PARAMETER_SUFFIX) {
efiAssert(CUSTOM_ERR_ASSERT, engine!=NULL, "getLEValue", NAN);
switch (action) {
case LE_METHOD_FAN:
return enginePins.fanRelay.getLogicValue();
case LE_METHOD_AC_TOGGLE:
return getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_COOLANT:
return getCoolantTemperature(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_IS_COOLANT_BROKEN:
return engine->isCltBroken;
case LE_METHOD_INTAKE_AIR:
return getIntakeAirTemperature(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_RPM:
return engine->rpmCalculator.getRpm();
case LE_METHOD_MAF:
return getMaf(PASS_ENGINE_PARAMETER_SIGNATURE);
case LE_METHOD_MAP:
return getMap();
case LE_METHOD_INTAKE_VVT:
case LE_METHOD_EXHAUST_VVT:
return engine->triggerCentral.vvtPosition;
case LE_METHOD_TIME_SINCE_BOOT:
return getTimeNowSeconds();
case LE_METHOD_FAN_OFF_SETTING:
return engineConfiguration->fanOffTemperature;
case LE_METHOD_FAN_ON_SETTING:
return engineConfiguration->fanOnTemperature;
case LE_METHOD_CRANKING_RPM:
return engineConfiguration->cranking.rpm;
case LE_METHOD_STARTUP_FUEL_PUMP_DURATION:
// todo: remove default value check and finish migration to startUpFuelPumpDuration param.
return (engineConfiguration->startUpFuelPumpDuration == 0) ? 4 : engineConfiguration->startUpFuelPumpDuration;
case LE_METHOD_IN_SHUTDOWN:
return engine->isInShutdownMode();
case LE_METHOD_VBATT:
return getVBatt(PASS_ENGINE_PARAMETER_SIGNATURE);
default:
warning(CUSTOM_FSIO_UNEXPECTED, "FSIO unexpected %d", action);
return NAN;
}
}
#if EFI_PROD_CODE || defined(__DOXYGEN__)
#include "pin_repository.h"
#include "pwm_generator.h"
// todo: that's about bench test mode, wrong header for sure!
#include "injector_central.h"
static void setFsioAnalogInputPin(const char *indexStr, const char *pinName) {
// todo: reduce code duplication between all "set pin methods"
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
engineConfiguration->fsioAdc[index] = (adc_channel_e) pin;
scheduleMsg(logger, "FSIO analog input pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void setFsioDigitalInputPin(const char *indexStr, const char *pinName) {
// todo: reduce code duplication between all "set pin methods"
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
boardConfiguration->fsioDigitalInputs[index] = pin;
scheduleMsg(logger, "FSIO digital input pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void setFsioPidOutputPin(const char *indexStr, const char *pinName) {
int index = atoi(indexStr) - 1;
if (index < 0 || index >= AUX_PID_COUNT) {
scheduleMsg(logger, "invalid AUX index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
engineConfiguration->auxPidPins[index] = pin;
scheduleMsg(logger, "FSIO aux pin #%d [%s]", (index + 1), hwPortname(pin));
}
static void showFsioInfo(void);
static void setFsioOutputPin(const char *indexStr, const char *pinName) {
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
brain_pin_e pin = parseBrainPin(pinName);
// todo: extract method - code duplication with other 'set_xxx_pin' methods?
if (pin == GPIO_INVALID) {
scheduleMsg(logger, "invalid pin name [%s]", pinName);
return;
}
boardConfiguration->fsioOutputPins[index] = pin;
scheduleMsg(logger, "FSIO output pin #%d [%s]", (index + 1), hwPortname(pin));
scheduleMsg(logger, "please writeconfig and reboot for pin to take effect");
showFsioInfo();
}
#endif /* EFI_PROD_CODE */
#endif
/**
* index is between zero and LE_COMMAND_LENGTH-1
*/
void setFsioExt(int index, brain_pin_e pin, const char * formula, int pwmFrequency DECLARE_ENGINE_PARAMETER_SUFFIX) {
boardConfiguration->fsioOutputPins[index] = pin;
int len = strlen(formula);
if (len >= LE_COMMAND_LENGTH) {
return;
}
strcpy(config->fsioFormulas[index], formula);
boardConfiguration->fsioFrequency[index] = pwmFrequency;
}
void setFsio(int index, brain_pin_e pin, const char * exp DECLARE_ENGINE_PARAMETER_SUFFIX) {
setFsioExt(index, pin, exp, NO_PWM PASS_ENGINE_PARAMETER_SUFFIX);
}
void applyFsioConfiguration(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
userPool.reset();
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e brainPin = boardConfiguration->fsioOutputPins[i];
if (brainPin != GPIO_UNASSIGNED) {
const char *formula = config->fsioFormulas[i];
LEElement *logic = userPool.parseExpression(formula);
if (logic == NULL) {
warning(CUSTOM_FSIO_PARSING, "parsing [%s]", formula);
}
fsioLogics[i] = logic;
}
}
}
void onConfigurationChangeFsioCallback(engine_configuration_s *previousConfiguration DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_FSIO || defined(__DOXYGEN__)
applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
#endif
}
#if EFI_PROD_CODE || defined(__DOXYGEN__)
static SimplePwm fsioPwm[FSIO_COMMAND_COUNT] CCM_OPTIONAL;
static LECalculator calc;
extern LEElement * fsioLogics[FSIO_COMMAND_COUNT];
// that's crazy, but what's an alternative? we need const char *, a shared buffer would not work for pin repository
static const char *getGpioPinName(int index) {
switch (index) {
case 0:
return "FSIO_OUT_0";
case 1:
return "FSIO_OUT_1";
case 10:
return "FSIO_OUT_10";
case 11:
return "FSIO_OUT_11";
case 12:
return "FSIO_OUT_12";
case 13:
return "FSIO_OUT_13";
case 14:
return "FSIO_OUT_14";
case 15:
return "FSIO_OUT_15";
case 2:
return "FSIO_OUT_2";
case 3:
return "FSIO_OUT_3";
case 4:
return "FSIO_OUT_4";
case 5:
return "FSIO_OUT_5";
case 6:
return "FSIO_OUT_6";
case 7:
return "FSIO_OUT_7";
case 8:
return "FSIO_OUT_8";
case 9:
return "FSIO_OUT_9";
}
return NULL;
}
float getFsioOutputValue(int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (fsioLogics[index] == NULL) {
warning(CUSTOM_NO_FSIO, "no FSIO for #%d %s", index + 1, hwPortname(boardConfiguration->fsioOutputPins[index]));
return NAN;
} else {
return calc.getValue2(engine->fsioLastValue[index], fsioLogics[index] PASS_ENGINE_PARAMETER_SUFFIX);
}
}
/**
* @param index from zero for (FSIO_COMMAND_COUNT - 1)
*/
static void handleFsio(int index DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (boardConfiguration->fsioOutputPins[index] == GPIO_UNASSIGNED) {
engine->fsioLastValue[index] = NAN;
return;
}
bool isPwmMode = boardConfiguration->fsioFrequency[index] != NO_PWM;
float fvalue = getFsioOutputValue(index PASS_ENGINE_PARAMETER_SUFFIX);
engine->fsioLastValue[index] = fvalue;
if (isPwmMode) {
fsioPwm[index].setSimplePwmDutyCycle(fvalue);
} else {
int value = (int) fvalue;
if (value != enginePins.fsioOutputs[index].getLogicValue()) {
// scheduleMsg(logger, "setting %s %s", getIo_pin_e(pin), boolToString(value));
enginePins.fsioOutputs[index].setValue(value);
}
}
}
static const char * action2String(le_action_e action) {
static char buffer[_MAX_FILLER];
switch(action) {
case LE_METHOD_RPM:
return "RPM";
case LE_METHOD_CRANKING_RPM:
return "cranking_rpm";
case LE_METHOD_COOLANT:
return "CLT";
case LE_METHOD_FAN_ON_SETTING:
return "fan_on";
case LE_METHOD_FAN_OFF_SETTING:
return "fan_off";
case LE_METHOD_FAN:
return "fan";
case LE_METHOD_STARTUP_FUEL_PUMP_DURATION:
return "startup_fuel_pump_duration";
case LE_METHOD_IN_SHUTDOWN:
return "in_shutdown";
default: {
// this is here to make compiler happy
}
}
itoa10(buffer, (int)action);
return buffer;
}
static void setPinState(const char * msg, OutputPin *pin, LEElement *element) {
if (isRunningBenchTest()) {
return; // let's not mess with bench testing
}
if (element == NULL) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", msg);
} else {
int value = (int)calc.getValue2(pin->getLogicValue(), element PASS_ENGINE_PARAMETER_SUFFIX);
if (pin->isInitialized() && value != pin->getLogicValue()) {
for (int i = 0;i < calc.currentCalculationLogPosition;i++) {
scheduleMsg(logger, "calc %d: action %s value %.2f", i, action2String(calc.calcLogAction[i]), calc.calcLogValue[i]);
}
scheduleMsg(logger, "setPin %s %s", msg, value ? "on" : "off");
pin->setValue(value);
}
}
}
static void setFsioFrequency(int index, int frequency) {
index--;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
boardConfiguration->fsioFrequency[index] = frequency;
if (frequency == 0) {
scheduleMsg(logger, "FSIO output #%d@%s set to on/off mode", index + 1, hwPortname(boardConfiguration->fsioOutputPins[index]));
} else {
scheduleMsg(logger, "Setting FSIO frequency %dHz on #%d@%s", frequency, index + 1, hwPortname(boardConfiguration->fsioOutputPins[index]));
}
}
static void useFsioForServo(int servoIndex DECLARE_ENGINE_PARAMETER_SUFFIX) {
LEElement * element = fsioLogics[8 - 1 + servoIndex];
if (element == NULL) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", "servo");
} else {
engine->servoValues[servoIndex] = calc.getValue2(engine->servoValues[servoIndex], element PASS_ENGINE_PARAMETER_SUFFIX);
}
}
/**
* this method should be invoked periodically to calculate FSIO and toggle corresponding FSIO outputs
*/
void runFsio(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
for (int index = 0; index < FSIO_COMMAND_COUNT; index++) {
handleFsio(index PASS_ENGINE_PARAMETER_SUFFIX);
}
#if EFI_FUEL_PUMP || defined(__DOXYGEN__)
if (boardConfiguration->fuelPumpPin != GPIO_UNASSIGNED) {
setPinState("pump", &enginePins.fuelPumpRelay, fuelPumpLogic);
}
#endif /* EFI_FUEL_PUMP */
#if EFI_MAIN_RELAY_CONTROL || defined(__DOXYGEN__)
if (boardConfiguration->mainRelayPin != GPIO_UNASSIGNED)
setPinState("main_relay", &enginePins.mainRelay, mainRelayLogic);
#else /* EFI_MAIN_RELAY_CONTROL */
/**
* main relay is always on if ECU is on, that's a good enough initial implementation
*/
if (boardConfiguration->mainRelayPin != GPIO_UNASSIGNED)
enginePins.mainRelay.setValue(true);
#endif /* EFI_MAIN_RELAY_CONTROL */
/**
* o2 heater is off during cranking
* todo: convert to FSIO?
* open question if heater should be ON during cranking
*/
enginePins.o2heater.setValue(engine->rpmCalculator.isRunning());
if (boardConfiguration->acRelayPin != GPIO_UNASSIGNED) {
setPinState("A/C", &enginePins.acRelay, acRelayLogic);
}
// if (boardConfiguration->alternatorControlPin != GPIO_UNASSIGNED) {
// setPinState("alternator", &enginePins.alternatorField, alternatorLogic, engine);
// }
if (boardConfiguration->fanPin != GPIO_UNASSIGNED) {
setPinState("fan", &enginePins.fanRelay, radiatorFanLogic);
}
if (engineConfiguration->useFSIO15ForIdleRpmAdjustment) {
LEElement * element = fsioLogics[MAGIC_OFFSET_FOR_IDLE_TARGET_RPM];
if (element == NULL) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", "RPM targer");
} else {
engine->fsioIdleTargetRPMAdjustment = calc.getValue2(engine->fsioIdleTargetRPMAdjustment, element PASS_ENGINE_PARAMETER_SUFFIX);
}
}
if (engineConfiguration->useFSIO16ForTimingAdjustment) {
LEElement * element = fsioLogics[MAGIC_OFFSET_FOR_TIMING_FSIO];
if (element == NULL) {
warning(CUSTOM_FSIO_INVALID_EXPRESSION, "invalid expression for %s", "timing");
} else {
engine->fsioTimingAdjustment = calc.getValue2(engine->fsioTimingAdjustment, element PASS_ENGINE_PARAMETER_SUFFIX);
}
}
if (engineConfiguration->useFSIO8ForServo1) {
useFsioForServo(0 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO9ForServo2) {
useFsioForServo(1 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO10ForServo3) {
useFsioForServo(2 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO11ForServo4) {
useFsioForServo(3 PASS_ENGINE_PARAMETER_SUFFIX);
}
if (engineConfiguration->useFSIO12ForServo5) {
useFsioForServo(4 PASS_ENGINE_PARAMETER_SUFFIX);
}
}
#endif /* EFI_PROD_CODE */
static void showFsio(const char *msg, LEElement *element) {
#if EFI_PROD_CODE || EFI_SIMULATOR
if (msg != NULL)
scheduleMsg(logger, "%s:", msg);
while (element != NULL) {
scheduleMsg(logger, "action %d: fValue=%.2f iValue=%d", element->action, element->fValue, element->iValue);
element = element->next;
}
scheduleMsg(logger, "<end>");
#endif
}
static void showFsioInfo(void) {
#if EFI_PROD_CODE || EFI_SIMULATOR
scheduleMsg(logger, "sys used %d/user used %d", sysPool.getSize(), userPool.getSize());
showFsio("a/c", acRelayLogic);
showFsio("fuel", fuelPumpLogic);
showFsio("fan", radiatorFanLogic);
showFsio("alt", alternatorLogic);
for (int i = 0; i < AUX_PID_COUNT ; i++) {
brain_pin_e pin = engineConfiguration->auxPidPins[i];
if (pin != GPIO_UNASSIGNED) {
scheduleMsg(logger, "FSIO aux #%d [%s]", (i + 1),
hwPortname(pin));
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
char * exp = config->fsioFormulas[i];
if (exp[0] != 0) {
/**
* in case of FSIO user interface indexes are starting with 0, the argument for that
* is the fact that the target audience is more software developers
*/
scheduleMsg(logger, "FSIO #%d [%s] at %s@%dHz value=%.2f", (i + 1), exp,
hwPortname(boardConfiguration->fsioOutputPins[i]), boardConfiguration->fsioFrequency[i],
engine->fsioLastValue[i]);
// scheduleMsg(logger, "user-defined #%d value=%.2f", i, engine->engineConfiguration2->fsioLastValue[i]);
showFsio(NULL, fsioLogics[i]);
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
float v = boardConfiguration->fsio_setting[i];
if (!cisnan(v)) {
scheduleMsg(logger, "user property #%d: %.2f", i + 1, v);
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e inputPin = boardConfiguration->fsioDigitalInputs[i];
if (inputPin != GPIO_UNASSIGNED) {
scheduleMsg(logger, "FSIO digital input #%d: %s", i, hwPortname(inputPin));
}
}
#endif
}
/**
* set_fsio_setting 1 0.11
*/
static void setFsioSetting(float humanIndexF, float value) {
#if EFI_PROD_CODE || EFI_SIMULATOR
int index = (int)humanIndexF - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", (int)humanIndexF);
return;
}
engineConfiguration->bc.fsio_setting[index] = value;
showFsioInfo();
#endif
}
static void setFsioExpression(const char *indexStr, const char *quotedLine) {
#if EFI_PROD_CODE || EFI_SIMULATOR
int index = atoi(indexStr) - 1;
if (index < 0 || index >= FSIO_COMMAND_COUNT) {
scheduleMsg(logger, "invalid FSIO index: %d", index);
return;
}
char * l = unquote((char*) quotedLine);
if (strlen(l) > LE_COMMAND_LENGTH - 1) {
scheduleMsg(logger, "Too long %d", strlen(l));
return;
}
scheduleMsg(logger, "setting user out #%d to [%s]", index + 1, l);
strcpy(config->fsioFormulas[index], l);
// this would apply the changes
applyFsioConfiguration(PASS_ENGINE_PARAMETER_SIGNATURE);
showFsioInfo();
#endif
}
static void rpnEval(char *line) {
#if EFI_PROD_CODE || EFI_SIMULATOR
line = unquote(line);
scheduleMsg(logger, "Parsing [%s]", line);
evalPool.reset();
LEElement * e = evalPool.parseExpression(line);
if (e == NULL) {
scheduleMsg(logger, "parsing failed");
} else {
float result = evalCalc.getValue2(0, e PASS_ENGINE_PARAMETER_SUFFIX);
scheduleMsg(logger, "Evaluate result: %.2f", result);
}
#endif
}
void initFsioImpl(Logging *sharedLogger DECLARE_ENGINE_PARAMETER_SUFFIX) {
#if EFI_PROD_CODE || EFI_SIMULATOR
logger = sharedLogger;
#endif
#if EFI_FUEL_PUMP || defined(__DOXYGEN__)
fuelPumpLogic = sysPool.parseExpression(FUEL_PUMP_LOGIC);
#endif /* EFI_FUEL_PUMP */
acRelayLogic = sysPool.parseExpression(AC_RELAY_LOGIC);
radiatorFanLogic = sysPool.parseExpression(FAN_CONTROL_LOGIC);
alternatorLogic = sysPool.parseExpression(ALTERNATOR_LOGIC);
#if EFI_MAIN_RELAY_CONTROL || defined(__DOXYGEN__)
if (boardConfiguration->mainRelayPin != GPIO_UNASSIGNED)
mainRelayLogic = sysPool.parseExpression(MAIN_RELAY_LOGIC);
#endif /* EFI_MAIN_RELAY_CONTROL */
#if EFI_PROD_CODE || defined(__DOXYGEN__)
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e brainPin = boardConfiguration->fsioOutputPins[i];
if (brainPin != GPIO_UNASSIGNED) {
int frequency = boardConfiguration->fsioFrequency[i];
if (frequency == 0) {
enginePins.fsioOutputs[i].initPin(getGpioPinName(i), boardConfiguration->fsioOutputPins[i], &DEFAULT_OUTPUT);
} else {
startSimplePwmExt(&fsioPwm[i], "FSIOpwm", brainPin, &enginePins.fsioOutputs[i], frequency, 0.5f, applyPinState);
}
}
}
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
brain_pin_e inputPin = boardConfiguration->fsioDigitalInputs[i];
if (inputPin != GPIO_UNASSIGNED) {
efiSetPadMode("FSIO input", inputPin, getInputMode(engineConfiguration->fsioInputModes[i]));
}
}
addConsoleActionSS("set_fsio_pid_output_pin", (VoidCharPtrCharPtr) setFsioPidOutputPin);
addConsoleActionSS("set_fsio_output_pin", (VoidCharPtrCharPtr) setFsioOutputPin);
addConsoleActionII("set_fsio_output_frequency", (VoidIntInt) setFsioFrequency);
addConsoleActionSS("set_fsio_digital_input_pin", (VoidCharPtrCharPtr) setFsioDigitalInputPin);
addConsoleActionSS("set_fsio_analog_input_pin", (VoidCharPtrCharPtr) setFsioAnalogInputPin);
#endif /* EFI_PROD_CODE */
#if EFI_PROD_CODE || EFI_SIMULATOR
addConsoleActionSS("set_rpn_expression", setFsioExpression);
addConsoleActionFF("set_fsio_setting", setFsioSetting);
addConsoleAction("fsioinfo", showFsioInfo);
addConsoleActionS("rpn_eval", (VoidCharPtr) rpnEval);
#endif /* EFI_PROD_CODE || EFI_SIMULATOR */
fsioTable1.init(config->fsioTable1, config->fsioTable1LoadBins,
config->fsioTable1RpmBins);
fsioTable2.init(config->fsioTable2, config->fsioTable2LoadBins,
config->fsioTable2RpmBins);
fsioTable3.init(config->fsioTable3, config->fsioTable3LoadBins,
config->fsioTable3RpmBins);
fsioTable4.init(config->fsioTable4, config->fsioTable4LoadBins,
config->fsioTable4RpmBins);
}
void prepareFsio(void) {
for (int i = 0; i < FSIO_COMMAND_COUNT; i++) {
fsioLogics[i] = NULL;
}
}
#endif /* EFI_FSIO */