rusefi-1/firmware/controllers/electronic_throttle.cpp

199 lines
5.5 KiB
C++

/**
* @file electronic_throttle.cpp
* @brief Electronic Throttle Module driver L298N
*
* todo: make this more universal if/when we get other hardware options
*
* Jan 2017 status:
* PID implementation tested on a bench only
* it is believed that more than just PID would be needed, as is this is probably
* not usable on a real vehicle. Needs to be tested :)
*
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2017
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "electronic_throttle.h"
#include "idle_controller.h"
#include "tps.h"
#include "io_pins.h"
#include "engine_configuration.h"
#include "pwm_generator_logic.h"
#include "pid.h"
#include "engine_controller.h"
#if EFI_ELECTRONIC_THROTTLE_BODY || defined(__DOXYGEN__)
#include "pin_repository.h"
#include "pwm_generator.h"
#define ETB_FREQ 400
static LoggingWithStorage logger("ETB");
/**
* @brief Control Thread stack
*/
static THD_WORKING_AREA(etbTreadStack, UTILITY_THREAD_STACK_SIZE);
/**
* @brief Pulse-Width Modulation state
*/
static SimplePwm etbPwmUp CCM_OPTIONAL;
static SimplePwm etbPwmDown CCM_OPTIONAL;
static OutputPin outputDirectionOpen CCM_OPTIONAL;
static OutputPin outputDirectionClose CCM_OPTIONAL;
static pid_s etbS;
static Pid pid(&etbS, 0, 100);
static float prevTps;
static float currentEtbDuty;
EXTERN_ENGINE;
static bool wasEtbBraking = false;
static msg_t etbThread(void *arg) {
UNUSED(arg);
while (true) {
percent_t pedal = getPedalPosition(PASS_ENGINE_PARAMETER_F);
percent_t tps = getTPS();
currentEtbDuty = pid.getValue(pedal, getTPS());
etbPwmUp.setSimplePwmDutyCycle(currentEtbDuty / 100);
bool needEtbBraking = absF(pedal - tps) < 3;
if (needEtbBraking != wasEtbBraking) {
scheduleMsg(&logger, "need ETB braking: %d", needEtbBraking);
wasEtbBraking = needEtbBraking;
}
outputDirectionClose.setValue(needEtbBraking);
// if (tps != prevTps) {
// prevTps = tps;
// scheduleMsg(&logger, "tps=%d", (int) tps);
// }
// this thread is activated 10 times per second
chThdSleepMilliseconds(boardConfiguration->etbDT);
}
#if defined __GNUC__
return -1;
#endif
}
static void setThrottleConsole(int level) {
scheduleMsg(&logger, "setting throttle=%d", level);
float dc = 0.01 + (minI(level, 98)) / 100.0;
etbPwmUp.setSimplePwmDutyCycle(dc);
print("st = %f\r\n", dc);
}
static void showEthInfo(void) {
static char pinNameBuffer[16];
scheduleMsg(&logger, "pedal=%f %d/%d @", getPedalPosition(), engineConfiguration->pedalPositionMin, engineConfiguration->pedalPositionMax,
getPinNameByAdcChannel("etb", engineConfiguration->pedalPositionChannel, pinNameBuffer));
scheduleMsg(&logger, "TPS=%f", getTPS());
scheduleMsg(&logger, "etbControlPin1=%s duty=%f", hwPortname(boardConfiguration->etbControlPin1),
currentEtbDuty);
scheduleMsg(&logger, "close dir=%s", hwPortname(boardConfiguration->etbDirectionPin2));
scheduleMsg(&logger, "etb P=%f I=%f D=%f dT=%d", engineConfiguration->etb.pFactor,
engineConfiguration->etb.iFactor,
0.0,
boardConfiguration->etbDT);
}
static void apply(void) {
pid.updateFactors(engineConfiguration->etb.pFactor, engineConfiguration->etb.iFactor, 0);
}
void setEtbPFactor(float value) {
engineConfiguration->etb.pFactor = value;
apply();
showEthInfo();
}
void setEtbIFactor(float value) {
engineConfiguration->etb.iFactor = value;
apply();
showEthInfo();
}
void setDefaultEtbParameters(void) {
engineConfiguration->pedalPositionMax = 6;
engineConfiguration->etb.pFactor = 1;
engineConfiguration->etb.iFactor = 0.5;
boardConfiguration->etbDT = 100;
}
void stopETBPins(void) {
unmarkPin(activeConfiguration.bc.etbControlPin1);
unmarkPin(activeConfiguration.bc.etbControlPin2);
unmarkPin(activeConfiguration.bc.etbDirectionPin1);
unmarkPin(activeConfiguration.bc.etbDirectionPin2);
}
void startETBPins(void) {
// this line used for PWM
startSimplePwmExt(&etbPwmUp, "etb1",
boardConfiguration->etbControlPin1,
&enginePins.etbOutput1,
ETB_FREQ,
0.80,
applyPinState);
startSimplePwmExt(&etbPwmDown, "etb2",
boardConfiguration->etbControlPin2,
&enginePins.etbOutput2,
ETB_FREQ,
0.80,
applyPinState);
outputDirectionOpen.initPin("etb dir open", boardConfiguration->etbDirectionPin1);
outputDirectionClose.initPin("etb dir close", boardConfiguration->etbDirectionPin2);
}
void initElectronicThrottle(void) {
// these two lines are controlling direction
// outputPinRegister("etb1", ELECTRONIC_THROTTLE_CONTROL_1, ETB_CONTROL_LINE_1_PORT, ETB_CONTROL_LINE_1_PIN);
// outputPinRegister("etb2", ELECTRONIC_THROTTLE_CONTROL_2, ETB_CONTROL_LINE_2_PORT, ETB_CONTROL_LINE_2_PIN);
if (!hasPedalPositionSensor()) {
return;
}
startETBPins();
addConsoleActionI("e", setThrottleConsole);
addConsoleAction("ethinfo", showEthInfo);
apply();
chThdCreateStatic(etbTreadStack, sizeof(etbTreadStack), NORMALPRIO, (tfunc_t) etbThread, NULL);
}
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */