rusefi-1/firmware/controllers/trigger/trigger_decoder.cpp

757 lines
24 KiB
C++

/**
* @file trigger_decoder.cpp
*
* @date Dec 24, 2013
* @author Andrey Belomutskiy, (c) 2012-2017
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__)
#include "obd_error_codes.h"
#include "trigger_decoder.h"
#include "cyclic_buffer.h"
#include "trigger_mazda.h"
#include "trigger_chrysler.h"
#include "trigger_gm.h"
#include "trigger_bmw.h"
#include "trigger_mitsubishi.h"
#include "trigger_subaru.h"
#include "trigger_nissan.h"
#include "trigger_toyota.h"
#include "trigger_rover.h"
#include "trigger_honda.h"
#include "trigger_structure.h"
#include "efiGpio.h"
#include "engine.h"
#include "engine_math.h"
#include "trigger_central.h"
#include "trigger_simulator.h"
#include "trigger_universal.h"
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
#include "sensor_chart.h"
#endif
EXTERN_ENGINE
;
static cyclic_buffer<int> errorDetection;
static bool isInitializingTrigger = false; // #286 miata NA config - sync error on startup
#if ! EFI_PROD_CODE || defined(__DOXYGEN__)
bool printTriggerDebug = false;
float actualSynchGap;
#endif /* ! EFI_PROD_CODE */
#if ! EFI_UNIT_TEST || defined(__DOXYGEN__)
extern TunerStudioOutputChannels tsOutputChannels;
#endif /* EFI_UNIT_TEST */
static Logging * logger;
efitick_t lastDecodingErrorTime = US2NT(-10000000LL);
// the boolean flag is a performance optimization so that complex comparison is avoided if no error
bool someSortOfTriggerError = false;
/**
* @return TRUE is something is wrong with trigger decoding
*/
bool isTriggerDecoderError(void) {
return errorDetection.sum(6) > 4;
}
bool TriggerState::isValidIndex(DECLARE_ENGINE_PARAMETER_F) {
return currentCycle.current_index < TRIGGER_SHAPE(size);
}
float TriggerState::getTriggerDutyCycle(int index) {
float time = prevTotalTime[index];
return 100 * time / prevCycleDuration;
}
static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 };
static trigger_value_e eventType[6] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE, TV_FALL, TV_RISE };
#define getCurrentGapDuration(nowNt) \
(isFirstEvent ? 0 : (nowNt) - toothed_previous_time)
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
#define PRINT_INC_INDEX if (printTriggerDebug) {\
printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \
}
#else
#define PRINT_INC_INDEX {}
#endif /* EFI_UNIT_TEST */
#define nextTriggerEvent() \
{ \
uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \
if (prevTime != 0) { \
/* even event - apply the value*/ \
currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \
currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \
} else { \
/* odd event - start accumulation */ \
currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \
} \
if (engineConfiguration->useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \
currentCycle.current_index++; \
PRINT_INC_INDEX; \
}
#define nextRevolution() { \
if (cycleCallback != NULL) { \
cycleCallback(this); \
} \
memcpy(prevTotalTime, currentCycle.totalTimeNt, sizeof(prevTotalTime)); \
prevCycleDuration = nowNt - startOfCycleNt; \
startOfCycleNt = nowNt; \
resetCurrentCycleState(); \
intTotalEventCounter(); \
runningRevolutionCounter++; \
totalEventCountBase += TRIGGER_SHAPE(size); \
}
#define considerEventForGap() (!TRIGGER_SHAPE(useOnlyPrimaryForSync) || isPrimary)
#define needToSkipFall(type) ((!TRIGGER_SHAPE(gapBothDirections)) && (( TRIGGER_SHAPE(useRiseEdge)) && (type != TV_RISE)))
#define needToSkipRise(type) ((!TRIGGER_SHAPE(gapBothDirections)) && ((!TRIGGER_SHAPE(useRiseEdge)) && (type != TV_FALL)))
#define isLessImportant(type) (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap()) )
/**
* @brief Trigger decoding happens here
* This method is invoked every time we have a fall or rise on one of the trigger sensors.
* This method changes the state of trigger_state_s data structure according to the trigger event
* @param signal type of event which just happened
* @param nowNt current time
*/
void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_S) {
efiAssertVoid(signal <= SHAFT_3RD_RISING, "unexpected signal");
trigger_wheel_e triggerWheel = eventIndex[signal];
trigger_value_e type = eventType[signal];
if (!engineConfiguration->useOnlyRisingEdgeForTrigger && curSignal == prevSignal) {
orderingErrorCounter++;
}
prevSignal = curSignal;
curSignal = signal;
currentCycle.eventCount[triggerWheel]++;
efitime_t currentDurationLong = getCurrentGapDuration(nowNt);
/**
* For performance reasons, we want to work with 32 bit values. If there has been more then
* 10 seconds since previous trigger event we do not really care.
*/
currentDuration =
currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong;
bool isPrimary = triggerWheel == T_PRIMARY;
if (isLessImportant(type)) {
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s isLessImportant %s now=%d index=%d\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
getTrigger_event_e(signal),
nowNt,
currentCycle.current_index);
}
#endif
/**
* For less important events we simply increment the index.
*/
nextTriggerEvent()
;
// if (TRIGGER_SHAPE(gapBothDirections) && considerEventForGap()) {
// isFirstEvent = false;
// thirdPreviousDuration = durationBeforePrevious;
// durationBeforePrevious = toothed_previous_duration;
// toothed_previous_duration = currentDuration;
// toothed_previous_time = nowNt;
// }
} else {
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s event %s %d\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
getTrigger_event_e(signal),
nowNt);
}
#endif
isFirstEvent = false;
// todo: skip a number of signal from the beginning
#if EFI_PROD_CODE || defined(__DOXYGEN__)
// scheduleMsg(&logger, "from %f to %f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, currentDuration, shaftPositionState->toothed_previous_duration);
// scheduleMsg(&logger, "ratio %f", 1.0 * currentDuration/ shaftPositionState->toothed_previous_duration);
#else
if (printTriggerDebug) {
printf("ratio %f: current=%d previous=%d\r\n", 1.0 * currentDuration / toothed_previous_duration,
currentDuration, toothed_previous_duration);
}
#endif
bool isSynchronizationPoint;
if (TRIGGER_SHAPE(isSynchronizationNeeded)) {
// this is getting a little out of hand, any ideas?
if (engineConfiguration->debugMode == DGB_TRIGGER_SYNC) {
float currentGap = 1.0 * currentDuration / toothed_previous_duration;
#if ! EFI_UNIT_TEST || defined(__DOXYGEN__)
tsOutputChannels.debugFloatField1 = currentGap;
tsOutputChannels.debugFloatField2 = currentCycle.current_index;
#endif /* EFI_UNIT_TEST */
}
bool primaryGap = currentDuration > toothed_previous_duration * TRIGGER_SHAPE(syncRatioFrom)
&& currentDuration < toothed_previous_duration * TRIGGER_SHAPE(syncRatioTo);
bool secondaryGap = cisnan(TRIGGER_SHAPE(secondSyncRatioFrom)) || (toothed_previous_duration > durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioFrom)
&& toothed_previous_duration < durationBeforePrevious * TRIGGER_SHAPE(secondSyncRatioTo));
bool thirdGap = cisnan(TRIGGER_SHAPE(thirdSyncRatioFrom)) || (durationBeforePrevious > thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioFrom)
&& durationBeforePrevious < thirdPreviousDuration * TRIGGER_SHAPE(thirdSyncRatioTo));
/**
* Here I prefer to have two multiplications instead of one division, that's a micro-optimization
*/
isSynchronizationPoint = primaryGap
&& secondaryGap
&& thirdGap;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) {
#else
if (printTriggerDebug) {
#endif /* EFI_PROD_CODE */
float gap = 1.0 * currentDuration / toothed_previous_duration;
float prevGap = 1.0 * toothed_previous_duration / durationBeforePrevious;
float gap3 = 1.0 * durationBeforePrevious / thirdPreviousDuration;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
scheduleMsg(logger, "%d: gap=%f/%f/%f @ %d while expected %f/%f and %f/%f error=%d",
getTimeNowSeconds(),
gap, prevGap, gap3,
currentCycle.current_index,
TRIGGER_SHAPE(syncRatioFrom), TRIGGER_SHAPE(syncRatioTo),
TRIGGER_SHAPE(secondSyncRatioFrom), TRIGGER_SHAPE(secondSyncRatioTo), someSortOfTriggerError);
#else
actualSynchGap = gap;
print("current gap %f/%f/%f c=%d prev=%d\r\n", gap, prevGap, gap3, currentDuration, toothed_previous_duration);
#endif /* EFI_PROD_CODE */
}
} else {
/**
* We are here in case of a wheel without synchronization - we just need to count events,
* synchronization point simply happens once we have the right number of events
*
* in case of noise the counter could be above the expected number of events, that's why 'more or equals' and not just 'equals'
*/
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("sync=%d index=%d size=%d\r\n",
shaft_is_synchronized,
currentCycle.current_index,
TRIGGER_SHAPE(size));
}
#endif
int endOfCycleIndex = TRIGGER_SHAPE(size) - (engineConfiguration->useOnlyRisingEdgeForTrigger ? 2 : 1);
isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= endOfCycleIndex);
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("isSynchronizationPoint=%d index=%d size=%d\r\n",
isSynchronizationPoint,
currentCycle.current_index,
TRIGGER_SHAPE(size));
}
#endif
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("%s isSynchronizationPoint=%d index=%d %s\r\n",
getTrigger_type_e(engineConfiguration->trigger.type),
isSynchronizationPoint, currentCycle.current_index,
getTrigger_event_e(signal));
}
#endif
if (isSynchronizationPoint) {
/**
* We can check if things are fine by comparing the number of events in a cycle with the expected number of event.
*/
bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0])
|| currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1])
|| currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]);
enginePins.triggerDecoderErrorPin.setValue(isDecodingError);
if (isDecodingError && !isInitializingTrigger) {
if (engineConfiguration->debugMode == DGB_TRIGGER_SYNC) {
#if ! EFI_UNIT_TEST || defined(__DOXYGEN__)
tsOutputChannels.debugIntField1 = currentCycle.eventCount[0];
tsOutputChannels.debugIntField2 = currentCycle.eventCount[1];
tsOutputChannels.debugIntField3 = currentCycle.eventCount[2];
#endif /* EFI_UNIT_TEST */
}
warning(CUSTOM_SYNC_COUNT_MISMATCH, "trigger not happy current %d/%d/%d expected %d/%d/%d",
currentCycle.eventCount[0],
currentCycle.eventCount[1],
currentCycle.eventCount[2],
TRIGGER_SHAPE(expectedEventCount[0]),
TRIGGER_SHAPE(expectedEventCount[1]),
TRIGGER_SHAPE(expectedEventCount[2]));
lastDecodingErrorTime = getTimeNowNt();
someSortOfTriggerError = true;
totalTriggerErrorCounter++;
if (engineConfiguration->isPrintTriggerSynchDetails || someSortOfTriggerError) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d",
currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]),
TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]),
currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]);
#endif /* EFI_PROD_CODE */
}
}
errorDetection.add(isDecodingError);
if (isTriggerDecoderError()) {
warning(CUSTOM_OBD_TRG_DECODING, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d",
TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]),
TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1],
currentCycle.eventCount[2]);
}
shaft_is_synchronized = true;
// this call would update duty cycle values
nextTriggerEvent()
;
nextRevolution();
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("index=%d %d\r\n",
currentCycle.current_index,
runningRevolutionCounter);
}
#endif /* EFI_UNIT_TEST */
} else {
nextTriggerEvent()
;
}
thirdPreviousDuration = durationBeforePrevious;
durationBeforePrevious = toothed_previous_duration;
toothed_previous_duration = currentDuration;
toothed_previous_time = nowNt;
}
if (!isValidIndex(PASS_ENGINE_PARAMETER_F) && !isInitializingTrigger) {
// let's not show a warning if we are just starting to spin
if (engine->rpmCalculator.rpmValue != 0) {
warning(CUSTOM_SYNC_ERROR, "sync error: index #%d above total size %d", currentCycle.current_index, TRIGGER_SHAPE(size));
lastDecodingErrorTime = getTimeNowNt();
someSortOfTriggerError = true;
}
}
if (someSortOfTriggerError) {
if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) {
someSortOfTriggerError = false;
}
}
if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) {
angle_t currentAngle = TRIGGER_SHAPE(eventAngles[currentCycle.current_index]);
// todo: make this '90' depend on cylinder count?
angle_t prevAngle = currentAngle - 90;
fixAngle(prevAngle, "prevAngle");
// todo: prevIndex should be pre-calculated
int prevIndex = TRIGGER_SHAPE(triggerIndexByAngle[(int)prevAngle]);
// now let's get precise angle for that event
prevAngle = TRIGGER_SHAPE(eventAngles[prevIndex]);
// todo: re-implement this as a subclass. we need two instances of
// uint32_t time = nowNt - timeOfLastEvent[prevIndex];
angle_t angleDiff = currentAngle - prevAngle;
// todo: angle diff should be pre-calculated
fixAngle(angleDiff, "angleDiff");
// float r = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time;
#if EFI_SENSOR_CHART || defined(__DOXYGEN__)
if (boardConfiguration->sensorChartMode == SC_DETAILED_RPM) {
// scAddData(currentAngle, r);
} else {
// scAddData(currentAngle, r / instantRpmValue[prevIndex]);
}
#endif
// instantRpmValue[currentCycle.current_index] = r;
// timeOfLastEvent[currentCycle.current_index] = nowNt;
}
}
void configure3_1_cam(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) {
s->initialize(FOUR_STROKE_CAM_SENSOR, true);
const float crankW = 360 / 3 / 2;
trigger_wheel_e crank = T_SECONDARY;
s->addEvent2(10, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(50, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER);
float a = 2 * crankW;
// #1/3
s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER);
// #2/3
s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER);
// #3/3
a += crankW;
a += crankW;
// 2nd #1/3
s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER);
// 2nd #2/3
s->addEvent2(a += crankW, crank, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(a += crankW, crank, TV_FALL PASS_ENGINE_PARAMETER);
s->isSynchronizationNeeded = false;
}
void configureOnePlusOne(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) {
float engineCycle = getEngineCycle(operationMode);
s->initialize(FOUR_STROKE_CAM_SENSOR, true);
s->addEvent2(180, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(360, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER);
s->addEvent2(540, T_SECONDARY, TV_RISE PASS_ENGINE_PARAMETER);
s->addEvent2(720, T_SECONDARY, TV_FALL PASS_ENGINE_PARAMETER);
s->isSynchronizationNeeded = false;
s->useOnlyPrimaryForSync = true;
}
void configureOnePlus60_2(TriggerShape *s, operation_mode_e operationMode DECLARE_ENGINE_PARAMETER_S) {
s->initialize(FOUR_STROKE_CAM_SENSOR, true);
int totalTeethCount = 60;
int skippedCount = 2;
s->addEvent2(2, T_PRIMARY, TV_RISE PASS_ENGINE_PARAMETER);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 2, 20 PASS_ENGINE_PARAMETER);
s->addEvent2(20, T_PRIMARY, TV_FALL PASS_ENGINE_PARAMETER);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 0, 360, 20, NO_RIGHT_FILTER PASS_ENGINE_PARAMETER);
addSkippedToothTriggerEvents(T_SECONDARY, s, totalTeethCount, skippedCount, 0.5, 360, 360, NO_LEFT_FILTER,
NO_RIGHT_FILTER PASS_ENGINE_PARAMETER);
s->isSynchronizationNeeded = false;
s->useOnlyPrimaryForSync = true;
}
static TriggerState initState CCM_OPTIONAL;
/**
* External logger is needed because at this point our logger is not yet initialized
*/
void TriggerShape::initializeTriggerShape(Logging *logger DECLARE_ENGINE_PARAMETER_S) {
const trigger_config_s *triggerConfig = &engineConfiguration->trigger;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiAssertVoid(getRemainingStack(chThdGetSelfX()) > 256, "init t");
scheduleMsg(logger, "initializeTriggerShape(%s/%d)", getTrigger_type_e(triggerConfig->type), (int) triggerConfig->type);
#endif
shapeDefinitionError = false;
switch (triggerConfig->type) {
case TT_TOOTHED_WHEEL:
initializeSkippedToothTriggerShapeExt(this, triggerConfig->customTotalToothCount,
triggerConfig->customSkippedToothCount, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_MAZDA_MIATA_NA:
initializeMazdaMiataNaShape(this PASS_ENGINE_PARAMETER);
break;
case TT_MAZDA_MIATA_NB1:
initializeMazdaMiataNb1Shape(this PASS_ENGINE_PARAMETER);
break;
case TT_MAZDA_MIATA_VVT_TEST:
initializeMazdaMiataVVtTestShape(this PASS_ENGINE_PARAMETER);
break;
case TT_MIATA_VVT:
initializeMazdaMiataNb2Crank(this PASS_ENGINE_PARAMETER);
break;
case TT_DODGE_NEON_1995:
configureNeon1995TriggerShape(this PASS_ENGINE_PARAMETER);
break;
case TT_DODGE_STRATUS:
configureDodgeStratusTriggerShape(this PASS_ENGINE_PARAMETER);
break;
case TT_DODGE_NEON_2003_CAM:
configureNeon2003TriggerShapeCam(this PASS_ENGINE_PARAMETER);
break;
case TT_DODGE_NEON_2003_CRANK:
configureNeon2003TriggerShapeCam(this PASS_ENGINE_PARAMETER);
// configureNeon2003TriggerShapeCrank(triggerShape PASS_ENGINE_PARAMETER);
break;
case TT_FORD_ASPIRE:
configureFordAspireTriggerShape(this PASS_ENGINE_PARAMETER);
break;
case TT_GM_7X:
configureGmTriggerShape(this PASS_ENGINE_PARAMETER);
break;
case TT_MAZDA_DOHC_1_4:
configureMazdaProtegeLx(this PASS_ENGINE_PARAMETER);
break;
case TT_ONE_PLUS_ONE:
configureOnePlusOne(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_3_1_CAM:
configure3_1_cam(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_ONE_PLUS_TOOTHED_WHEEL_60_2:
configureOnePlus60_2(this, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_ONE:
setToothedWheelConfiguration(this, 1, 0, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_MAZDA_SOHC_4:
configureMazdaProtegeSOHC(this PASS_ENGINE_PARAMETER);
break;
case TT_MINI_COOPER_R50:
configureMiniCooperTriggerShape(this PASS_ENGINE_PARAMETER);
break;
case TT_TOOTHED_WHEEL_60_2:
setToothedWheelConfiguration(this, 60, 2, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_60_2_VW:
setVwConfiguration(this PASS_ENGINE_PARAMETER);
break;
case TT_TOOTHED_WHEEL_36_1:
setToothedWheelConfiguration(this, 36, 1, engineConfiguration->operationMode PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_4_24_1:
configureHonda_1_4_24(this, true, true, T_CHANNEL_3, T_PRIMARY, 0 PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_4_24:
configureHonda_1_4_24(this, false, true, T_NONE, T_PRIMARY, 0 PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_1_24:
configureHonda_1_4_24(this, true, false, T_PRIMARY, T_NONE, 10 PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_ACCORD_1_24_SHIFTED:
configureHondaAccordShifted(this PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_1_4_24:
configureHondaAccordCDDip(this PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_CBR_600:
configureHondaCbr600(this PASS_ENGINE_PARAMETER);
break;
case TT_HONDA_CBR_600_CUSTOM:
configureHondaCbr600custom(this PASS_ENGINE_PARAMETER);
break;
case TT_MITSUBISHI:
initializeMitsubishi4g18(this PASS_ENGINE_PARAMETER);
break;
case TT_DODGE_RAM:
initDodgeRam(this PASS_ENGINE_PARAMETER);
break;
case TT_JEEP_18_2_2_2:
initJeep18_2_2_2(this PASS_ENGINE_PARAMETER);
break;
case TT_SUBARU_7_6:
initializeSubaru7_6(this PASS_ENGINE_PARAMETER);
break;
case TT_36_2_2_2:
initialize36_2_2_2(this PASS_ENGINE_PARAMETER);
break;
case TT_2JZ_3_34:
initialize2jzGE3_34(this PASS_ENGINE_PARAMETER);
break;
case TT_2JZ_1_12:
initialize2jzGE1_12(this PASS_ENGINE_PARAMETER);
break;
case TT_NISSAN_SR20VE:
initializeNissanSR20VE_4(this PASS_ENGINE_PARAMETER);
break;
case TT_NISSAN_SR20VE_360:
initializeNissanSR20VE_4_360(this PASS_ENGINE_PARAMETER);
break;
case TT_ROVER_K:
initializeRoverK(this PASS_ENGINE_PARAMETER);
break;
case TT_GM_LS_24:
initGmLS24(this PASS_ENGINE_PARAMETER);
break;
default:
shapeDefinitionError = true;
warning(CUSTOM_ERR_NO_SHAPE, "initializeTriggerShape() not implemented: %d", triggerConfig->type);
return;
}
wave.checkSwitchTimes(getSize());
/**
* this instance is used only to initialize 'this' TriggerShape instance
* #192 BUG real hardware trigger events could be coming even while we are initializing trigger
*/
initState.reset();
calculateTriggerSynchPoint(&initState PASS_ENGINE_PARAMETER);
}
static void onFindIndex(TriggerState *state) {
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
// todo: that's not the best place for this intermediate data storage, fix it!
state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i];
}
}
/**
* Trigger shape is defined in a way which is convenient for trigger shape definition
* On the other hand, trigger decoder indexing begins from synchronization event.
*
* This function finds the index of synchronization event within TriggerShape
*/
uint32_t findTriggerZeroEventIndex(TriggerState *state, TriggerShape * shape,
trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_S) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiAssert(getRemainingStack(chThdGetSelfX()) > 128, "findPos", -1);
#endif
isInitializingTrigger = true;
errorDetection.clear();
efiAssert(state != NULL, "NULL state", -1);
state->reset();
if (shape->shapeDefinitionError) {
return 0;
}
// todo: should this variable be declared 'static' to reduce stack usage?
TriggerStimulatorHelper helper;
uint32_t syncIndex = helper.doFindTrigger(shape, triggerConfig, state PASS_ENGINE_PARAMETER);
if (syncIndex == EFI_ERROR_CODE) {
isInitializingTrigger = false;
return syncIndex;
}
efiAssert(state->getTotalRevolutionCounter() == 1, "totalRevolutionCounter", EFI_ERROR_CODE);
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
if (printTriggerDebug) {
printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex);
}
#endif /* EFI_UNIT_TEST */
/**
* Now that we have just located the synch point, we can simulate the whole cycle
* in order to calculate expected duty cycle
*
* todo: add a comment why are we doing '2 * shape->getSize()' here?
*/
state->cycleCallback = onFindIndex;
helper.assertSyncPositionAndSetDutyCycle(syncIndex, state, shape, triggerConfig PASS_ENGINE_PARAMETER);
isInitializingTrigger = false;
return syncIndex % shape->getSize();
}
void initTriggerDecoderLogger(Logging *sharedLogger) {
logger = sharedLogger;
}
void initTriggerDecoder(void) {
#if EFI_GPIO_HARDWARE || defined(__DOXYGEN__)
enginePins.triggerDecoderErrorPin.initPin("trg_err", boardConfiguration->triggerErrorPin,
&boardConfiguration->triggerErrorPinMode);
#endif /* EFI_GPIO_HARDWARE */
}
#endif /* EFI_SHAFT_POSITION_INPUT */