rusefi-1/firmware/controllers/math/pid.cpp

214 lines
4.9 KiB
C++

/**
* @file pid.cpp
*
* https://en.wikipedia.org/wiki/Feedback
* http://en.wikipedia.org/wiki/PID_controller
*
* @date Sep 16, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*/
#include "pid.h"
#include "math.h"
Pid::Pid() {
init(NULL);
}
Pid::Pid(pid_s *pid) {
init(pid);
}
void Pid::init(pid_s *pid) {
this->pid = pid;
resetCounter = 0;
reset();
}
bool Pid::isSame(pid_s *pid) {
return this->pid->pFactor == pid->pFactor
&& this->pid->iFactor == pid->iFactor
&& this->pid->dFactor == pid->dFactor
&& this->pid->offset == pid->offset
&& this->pid->period == pid->period;
}
float Pid::getValue(float target, float input) {
return getValue(target, input, 1);
}
float Pid::getRawValue(float target, float input, float dTime) {
float error = (target - input) * errorAmplificationCoef;
prevTarget = target;
prevInput = input;
float pTerm = pid->pFactor * error;
updateITerm(pid->iFactor * dTime * error);
dTerm = pid->dFactor / dTime * (error - prevError);
prevError = error;
return pTerm + iTerm + dTerm + pid->offset;
}
float Pid::getValue(float target, float input, float dTime) {
float result = getRawValue(target, input, dTime);
if (result > pid->maxValue) {
result = pid->maxValue;
} else if (result < pid->minValue) {
result = pid->minValue;
}
prevResult = result;
return result;
}
void Pid::updateFactors(float pFactor, float iFactor, float dFactor) {
pid->pFactor = pFactor;
pid->iFactor = iFactor;
pid->dFactor = dFactor;
reset();
}
void Pid::reset(void) {
dTerm = iTerm = 0;
prevResult = prevInput = prevTarget = prevError = 0;
errorAmplificationCoef = 1.0f;
resetCounter++;
}
float Pid::getP(void) {
return pid->pFactor;
}
float Pid::getI(void) {
return pid->iFactor;
}
float Pid::getPrevError(void) {
return prevError;
}
float Pid::getIntegration(void) {
return iTerm;
}
float Pid::getD(void) {
return pid->dFactor;
}
float Pid::getOffset(void) {
return pid->offset;
}
void Pid::setErrorAmplification(float coef) {
errorAmplificationCoef = coef;
}
#if EFI_PROD_CODE || EFI_SIMULATOR
void Pid::postState(TunerStudioOutputChannels *tsOutputChannels) {
postState(tsOutputChannels, 1);
}
/**
* see https://rusefi.com/wiki/index.php?title=Manual:Debug_fields
*/
void Pid::postState(TunerStudioOutputChannels *tsOutputChannels, int pMult) {
tsOutputChannels->debugFloatField1 = prevResult;
tsOutputChannels->debugFloatField2 = iTerm;
tsOutputChannels->debugFloatField3 = getPrevError();
tsOutputChannels->debugFloatField4 = getI();
tsOutputChannels->debugFloatField5 = getD();
// tsOutputChannels->debugFloatField6 = pid->minValue;
tsOutputChannels->debugFloatField7 = pid->maxValue;
tsOutputChannels->debugIntField1 = getP() * pMult;
tsOutputChannels->debugIntField2 = getOffset();
tsOutputChannels->debugIntField3 = resetCounter;
tsOutputChannels->debugFloatField6 = dTerm;
}
#endif
void Pid::sleep() {
#if !EFI_UNIT_TEST || defined(__DOXYGEN__)
int period = maxI(10, pid->period);
chThdSleepMilliseconds(period);
#endif /* EFI_UNIT_TEST */
}
void Pid::showPidStatus(Logging *logging, const char*msg) {
scheduleMsg(logging, "%s settings: offset=%d P=%.5f I=%.5f D=%.5f dT=%d",
msg,
pid->offset,
pid->pFactor,
pid->iFactor,
pid->dFactor,
pid->period);
scheduleMsg(logging, "%s status: value=%.2f input=%.2f/target=%.2f iTerm=%.5f dTerm=%.5f",
msg,
prevResult,
prevInput,
prevTarget,
iTerm, dTerm);
}
void Pid::updateITerm(float value) {
iTerm += value;
/**
* If we have exceeded the ability of the controlled device to hit target, the I factor will keep accumulating and approach infinity.
* Here we limit the I-term #353
*/
if (iTerm > pid->maxValue * 100)
iTerm = pid->maxValue * 100;
// this is kind of a hack. a proper fix would be having separate additional settings 'maxIValue' and 'minIValye'
if (iTerm < -pid->maxValue * 100)
iTerm = -pid->maxValue * 100;
}
PidCic::PidCic() {
// call our derived reset()
reset();
}
PidCic::PidCic(pid_s *pid) : Pid(pid) {
// call our derived reset()
reset();
}
void PidCic::reset(void) {
Pid::reset();
totalItermCnt = 0;
for (int i = 0; i < PID_AVG_BUF_SIZE; i++)
iTermBuf[i] = 0;
iTermInvNum = 1.0f / (float)PID_AVG_BUF_SIZE;
}
float PidCic::getValue(float target, float input, float dTime) {
return getRawValue(target, input, dTime);
}
void PidCic::updateITerm(float value) {
// use a variation of cascaded integrator-comb (CIC) filtering to get non-overflow iTerm
totalItermCnt++;
int localBufPos = (totalItermCnt >> PID_AVG_BUF_SIZE_SHIFT) % PID_AVG_BUF_SIZE;
int localPrevBufPos = ((totalItermCnt - 1) >> PID_AVG_BUF_SIZE_SHIFT) % PID_AVG_BUF_SIZE;
// reset old buffer cell
if (localPrevBufPos != localBufPos)
iTermBuf[localBufPos] = 0;
// integrator stage
iTermBuf[localBufPos] += value;
// return moving average of all sums, to smoothen the result
float iTermSum = 0;
for (int i = 0; i < PID_AVG_BUF_SIZE; i++) {
iTermSum += iTermBuf[i];
}
iTerm = iTermSum * iTermInvNum;
}