rusefi-1/firmware/controllers/idle_thread.cpp

525 lines
18 KiB
C++

/**
* @file idle_thread.cpp
* @brief Idle Air Control valve thread.
*
* This thread looks at current RPM and decides if it should increase or decrease IAC duty cycle.
* This file is has the hardware & scheduling logic, desired idle level lives separately
*
*
* @date May 23, 2013
* @author Andrey Belomutskiy, (c) 2012-2018
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "global.h"
#include "engine_configuration.h"
#include "rpm_calculator.h"
#include "pwm_generator.h"
#include "idle_thread.h"
#include "pin_repository.h"
#include "engine.h"
#include "PeriodicController.h"
#include "stepper.h"
#if EFI_IDLE_CONTROL || defined(__DOXYGEN__)
#include "allsensors.h"
static Logging *logger;
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
extern TunerStudioOutputChannels tsOutputChannels;
#endif /* EFI_TUNER_STUDIO */
EXTERN_ENGINE
;
static bool shouldResetPid = false;
// we might reset PID state when the state is changed, but only if needed (See autoIdle())
static bool mightResetPid = false;
#if EFI_IDLE_INCREMENTAL_PID_CIC || defined(__DOXYGEN__)
// Use new PID with CIC integrator
static PidCic idlePid(&engineConfiguration->idleRpmPid);
#else
static Pid idlePid(&engineConfiguration->idleRpmPid);
#endif /* EFI_IDLE_INCREMENTAL_PID_CIC */
// todo: extract interface for idle valve hardware, with solenoid and stepper implementations?
static SimplePwm idleSolenoid("idle");
static StepperMotor iacMotor;
static uint32_t lastCrankingCyclesCounter = 0;
static float lastCrankingIacPosition;
typedef enum {
INIT = 0,
TPS_THRESHOLD = 1,
RPM_DEAD_ZONE = 2,
PWM_PRETTY_CLOSE = 3,
ADJUSTING = 4,
BLIP = 5,
} idle_state_e;
idle_state_e idleState = INIT;
/**
* that's current position with CLT and IAT corrections
*/
static percent_t currentIdlePosition = -100.0f;
/**
* the same as currentIdlePosition, but without adjustments (iacByTpsTaper, afterCrankingIACtaperDuration)
*/
static percent_t baseIdlePosition = currentIdlePosition;
/**
* When the IAC position value change is insignificant (lower than this threshold), leave the poor valve alone
* todo: why do we have this logic? is this ever useful?
* See
*/
static percent_t idlePositionSensitivityThreshold = 0.0f;
void idleDebug(const char *msg, percent_t value) {
scheduleMsg(logger, "idle debug: %s%.2f", msg, value);
}
static void showIdleInfo(void) {
const char * idleModeStr = getIdle_mode_e(engineConfiguration->idleMode);
scheduleMsg(logger, "idleMode=%s position=%.2f isStepper=%s", idleModeStr,
getIdlePosition(), boolToString(CONFIGB(useStepperIdle)));
if (CONFIGB(useStepperIdle)) {
scheduleMsg(logger, "directionPin=%s reactionTime=%.2f", hwPortname(CONFIGB(idle).stepperDirectionPin),
engineConfiguration->idleStepperReactionTime);
scheduleMsg(logger, "stepPin=%s steps=%d", hwPortname(CONFIGB(idle).stepperStepPin),
engineConfiguration->idleStepperTotalSteps);
scheduleMsg(logger, "enablePin=%s/%d", hwPortname(engineConfiguration->stepperEnablePin),
engineConfiguration->stepperEnablePinMode);
} else {
scheduleMsg(logger, "idle valve freq=%d on %s", CONFIGB(idle).solenoidFrequency,
hwPortname(CONFIGB(idle).solenoidPin));
}
if (engineConfiguration->idleMode == IM_AUTO) {
idlePid.showPidStatus(logger, "idle");
}
}
void setIdleMode(idle_mode_e value) {
engineConfiguration->idleMode = value ? IM_AUTO : IM_MANUAL;
showIdleInfo();
}
static void applyIACposition(percent_t position) {
if (CONFIGB(useStepperIdle)) {
iacMotor.setTargetPosition(position / 100 * engineConfiguration->idleStepperTotalSteps);
} else {
/**
* currently idle level is an percent value (0-100 range), and PWM takes a float in the 0..1 range
* todo: unify?
*/
idleSolenoid.setSimplePwmDutyCycle(position / 100.0);
}
}
static percent_t manualIdleController(float cltCorrection) {
percent_t correctedPosition = cltCorrection * CONFIGB(manIdlePosition);
// let's put the value into the right range
correctedPosition = maxF(correctedPosition, 0.01);
correctedPosition = minF(correctedPosition, 99.9);
return correctedPosition;
}
void setIdleValvePosition(int positionPercent) {
if (positionPercent < 1 || positionPercent > 99)
return;
scheduleMsg(logger, "setting idle valve position %d", positionPercent);
showIdleInfo();
// todo: this is not great that we have to write into configuration here
CONFIGB(manIdlePosition) = positionPercent;
}
static percent_t blipIdlePosition;
static efitimeus_t timeToStopBlip = 0;
static efitimeus_t timeToStopIdleTest = 0;
/**
* I use this questionable feature to tune acceleration enrichment
*/
static void blipIdle(int idlePosition, int durationMs) {
if (timeToStopBlip != 0) {
return; // already in idle blip
}
blipIdlePosition = idlePosition;
timeToStopBlip = getTimeNowUs() + 1000 * durationMs;
}
static void finishIdleTestIfNeeded() {
if (timeToStopIdleTest != 0 && getTimeNowUs() > timeToStopIdleTest)
timeToStopIdleTest = 0;
}
static void undoIdleBlipIfNeeded() {
if (timeToStopBlip != 0 && getTimeNowUs() > timeToStopBlip) {
timeToStopBlip = 0;
}
}
percent_t getIdlePosition(void) {
return currentIdlePosition;
}
/**
* @return idle valve position percentage for automatic closed loop mode
*/
static percent_t automaticIdleController() {
percent_t tpsPos = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
if (tpsPos > CONFIGB(idlePidDeactivationTpsThreshold)) {
// Don't store old I and D terms if PID doesn't work anymore.
// Otherwise they will affect the idle position much later, when the throttle is closed.
if (mightResetPid) {
mightResetPid = false;
shouldResetPid = true;
}
idleState = TPS_THRESHOLD;
// just leave IAC position as is (but don't return currentIdlePosition - it may already contain additionalAir)
return baseIdlePosition;
}
// get Target RPM for Auto-PID from a separate table
float clt = engine->sensors.clt;
int targetRpm;
if (cisnan(clt)) {
// error is already reported, let's take first value from the table should be good enough error handing solution
targetRpm = CONFIG(cltIdleRpm)[0];
} else {
targetRpm = interpolate2d("cltRpm", clt, CONFIG(cltIdleRpmBins), CONFIG(cltIdleRpm), CLT_CURVE_SIZE);
}
targetRpm += engine->fsioState.fsioIdleTargetRPMAdjustment;
// check if within the dead zone
int rpm = GET_RPM();
if (absI(rpm - targetRpm) <= CONFIG(idlePidRpmDeadZone)) {
idleState = RPM_DEAD_ZONE;
// current RPM is close enough, no need to change anything
return baseIdlePosition;
}
// When rpm < targetRpm, there's a risk of dropping RPM too low - and the engine dies out.
// So PID reaction should be increased by adding extra percent to PID-error:
percent_t errorAmpCoef = 1.0f;
if (rpm < targetRpm)
errorAmpCoef += (float)CONFIG(pidExtraForLowRpm) / PERCENT_MULT;
// If errorAmpCoef > 1.0, then PID thinks that RPM is lower than it is, and controls IAC more aggressively
idlePid.setErrorAmplification(errorAmpCoef);
percent_t newValue = idlePid.getOutput(targetRpm, rpm, engineConfiguration->idleRpmPid.periodMs);
// the state of PID has been changed, so we might reset it now, but only when needed (see idlePidDeactivationTpsThreshold)
mightResetPid = true;
#if EFI_IDLE_INCREMENTAL_PID_CIC || defined(__DOXYGEN__)
// Treat the 'newValue' as if it contains not an actual IAC position, but an incremental delta.
// So we add this delta to the base IAC position, with a smooth taper for TPS transients.
newValue = baseIdlePosition + interpolateClamped(0.0f, newValue, CONFIGB(idlePidDeactivationTpsThreshold), 0.0f, tpsPos);
// apply the PID limits
newValue = maxF(newValue, CONFIG(idleRpmPid.minValue));
newValue = minF(newValue, CONFIG(idleRpmPid.maxValue));
#endif /* EFI_IDLE_INCREMENTAL_PID_CIC */
// Interpolate to the manual position when RPM is close to the upper RPM limit (if idlePidRpmUpperLimit is set).
// If RPM increases and the throttle is closed, then we're in coasting mode, and we should smoothly disable auto-pid.
// If we just leave IAC at baseIdlePosition (as in case of TPS deactivation threshold), RPM would get stuck.
// That's why there's 'useIacTableForCoasting' setting which involves a separate IAC position table for coasting (iacCoasting).
// Currently it's user-defined. But eventually we'll use a real calculated and stored IAC position instead.
int idlePidLowerRpm = targetRpm + CONFIG(idlePidRpmDeadZone);
if (CONFIG(idlePidRpmUpperLimit) > 0) {
if (CONFIGB(useIacTableForCoasting)) {
percent_t iacPosForCoasting = interpolate2d("iacCoasting", clt, CONFIG(iacCoastingBins), CONFIG(iacCoasting), CLT_CURVE_SIZE);
newValue = interpolateClamped(idlePidLowerRpm, newValue, idlePidLowerRpm + CONFIG(idlePidRpmUpperLimit), iacPosForCoasting, rpm);
} else {
// Well, just leave it as is, without PID regulation...
newValue = baseIdlePosition;
}
}
return newValue;
}
class IdleController : public PeriodicController<UTILITY_THREAD_STACK_SIZE> {
public:
IdleController() : PeriodicController("IdleValve") { }
private:
void PeriodicTask(efitime_t nowNt) override {
UNUSED(nowNt);
setPeriod(NOT_TOO_OFTEN(10 /* ms */, engineConfiguration->idleRpmPid.periodMs));
/*
* Here we have idle logic thread - actual stepper movement is implemented in a separate
* working thread,
* @see stepper.cpp
*/
if (engineConfiguration->isVerboseIAC && engineConfiguration->idleMode == IM_AUTO) {
scheduleMsg(logger, "state %d", idleState);
idlePid.showPidStatus(logger, "idle");
}
if (shouldResetPid) {
idlePid.reset();
// alternatorPidResetCounter++;
shouldResetPid = false;
}
#if EFI_PROD_CODE || defined(__DOXYGEN__)
// this value is not used yet
if (CONFIGB(clutchDownPin) != GPIO_UNASSIGNED) {
engine->clutchDownState = efiReadPin(CONFIGB(clutchDownPin));
}
if (hasAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE)) {
engine->acSwitchState = getAcToggle(PASS_ENGINE_PARAMETER_SIGNATURE);
}
if (CONFIGB(clutchUpPin) != GPIO_UNASSIGNED) {
engine->clutchUpState = efiReadPin(CONFIGB(clutchUpPin));
}
if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) {
engine->brakePedalState = efiReadPin(engineConfiguration->brakePedalPin);
}
#endif /* EFI_PROD_CODE */
finishIdleTestIfNeeded();
undoIdleBlipIfNeeded();
float clt = engine->sensors.clt;
bool isRunning = engine->rpmCalculator.isRunning(PASS_ENGINE_PARAMETER_SIGNATURE);
// cltCorrection is used only for cranking or running in manual mode
float cltCorrection;
if (cisnan(clt))
cltCorrection = 1.0f;
// Use separate CLT correction table for cranking
else if (engineConfiguration->overrideCrankingIacSetting && !isRunning) {
cltCorrection = interpolate2d("cltCrankingT", clt, config->cltCrankingCorrBins, config->cltCrankingCorr, CLT_CRANKING_CURVE_SIZE) / PERCENT_MULT;
} else {
// this value would be ignored if running in AUTO mode
// but we need it while cranking in AUTO mode
cltCorrection = interpolate2d("cltT", clt, config->cltIdleCorrBins, config->cltIdleCorr, CLT_CURVE_SIZE) / PERCENT_MULT;
}
percent_t iacPosition;
if (timeToStopBlip != 0) {
iacPosition = blipIdlePosition;
baseIdlePosition = iacPosition;
idleState = BLIP;
} else if (!isRunning) {
// during cranking it's always manual mode, PID would make no sence during cranking
iacPosition = cltCorrection * engineConfiguration->crankingIACposition;
// save cranking position & cycles counter for taper transition
lastCrankingIacPosition = iacPosition;
lastCrankingCyclesCounter = engine->rpmCalculator.getRevolutionCounterSinceStart();
baseIdlePosition = iacPosition;
} else {
if (engineConfiguration->idleMode == IM_MANUAL) {
// let's re-apply CLT correction
iacPosition = manualIdleController(cltCorrection);
} else {
iacPosition = automaticIdleController();
}
// store 'base' iacPosition without adjustments
baseIdlePosition = iacPosition;
percent_t tpsPos = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
float additionalAir = (float)engineConfiguration->iacByTpsTaper;
iacPosition += interpolateClamped(0.0f, 0.0f, CONFIGB(idlePidDeactivationTpsThreshold), additionalAir, tpsPos);
// taper transition from cranking to running (uint32_t to float conversion is safe here)
if (engineConfiguration->afterCrankingIACtaperDuration > 0)
iacPosition = interpolateClamped(lastCrankingCyclesCounter, lastCrankingIacPosition,
lastCrankingCyclesCounter + engineConfiguration->afterCrankingIACtaperDuration, iacPosition,
engine->rpmCalculator.getRevolutionCounterSinceStart());
}
if (engineConfiguration->debugMode == DBG_IDLE_CONTROL) {
if (engineConfiguration->idleMode == IM_AUTO) {
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
// see also tsOutputChannels->idlePosition
idlePid.postState(&tsOutputChannels, 1000000);
#endif /* EFI_TUNER_STUDIO */
} else {
#if EFI_TUNER_STUDIO || defined(__DOXYGEN__)
tsOutputChannels.debugFloatField1 = iacPosition;
tsOutputChannels.debugIntField1 = iacMotor.getTargetPosition();
#endif /* EFI_TUNER_STUDIO */
}
}
// The threshold is dependent on IAC type (see initIdleHardware())
if (absF(iacPosition - currentIdlePosition) < idlePositionSensitivityThreshold) {
idleState = PWM_PRETTY_CLOSE;
return; // value is pretty close, let's leave the poor valve alone
}
currentIdlePosition = iacPosition;
idleState = ADJUSTING;
applyIACposition(currentIdlePosition);
}
};
static IdleController instance;
void setTargetIdleRpm(int value) {
setTargetRpmCurve(value PASS_ENGINE_PARAMETER_SUFFIX);
scheduleMsg(logger, "target idle RPM %d", value);
showIdleInfo();
}
static void apply(void) {
idlePid.updateFactors(engineConfiguration->idleRpmPid.pFactor, engineConfiguration->idleRpmPid.iFactor, engineConfiguration->idleRpmPid.dFactor);
}
void setIdleOffset(float value) {
engineConfiguration->idleRpmPid.offset = value;
showIdleInfo();
}
void setIdlePFactor(float value) {
engineConfiguration->idleRpmPid.pFactor = value;
apply();
showIdleInfo();
}
void setIdleIFactor(float value) {
engineConfiguration->idleRpmPid.iFactor = value;
apply();
showIdleInfo();
}
void setIdleDFactor(float value) {
engineConfiguration->idleRpmPid.dFactor = value;
apply();
showIdleInfo();
}
void setIdleDT(int value) {
engineConfiguration->idleRpmPid.periodMs = value;
apply();
showIdleInfo();
}
void onConfigurationChangeIdleCallback(engine_configuration_s *previousConfiguration) {
shouldResetPid = !idlePid.isSame(&previousConfiguration->idleRpmPid);
idleSolenoid.setFrequency(CONFIGB(idle).solenoidFrequency);
}
/**
* Idle test would activate the solenoid for three seconds
*/
void startIdleBench(void) {
timeToStopIdleTest = getTimeNowUs() + MS2US(3000); // 3 seconds
scheduleMsg(logger, "idle valve bench test");
showIdleInfo();
}
void setDefaultIdleParameters(void) {
engineConfiguration->idleRpmPid.pFactor = 0.1f;
engineConfiguration->idleRpmPid.iFactor = 0.05f;
engineConfiguration->idleRpmPid.dFactor = 0.0f;
engineConfiguration->idleRpmPid.periodMs = 10;
}
static void applyIdleSolenoidPinState(PwmConfig *state, int stateIndex) {
efiAssertVoid(CUSTOM_ERR_6645, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
efiAssertVoid(CUSTOM_ERR_6646, state->multiWave.waveCount == 1, "invalid idle waveCount");
OutputPin *output = state->outputPins[0];
int value = state->multiWave.getChannelState(/*channelIndex*/0, stateIndex);
if (!value /* always allow turning solenoid off */ ||
(GET_RPM_VALUE != 0 || timeToStopIdleTest != 0) /* do not run solenoid unless engine is spinning or bench testing in progress */
) {
output->setValue(value);
}
}
static void initIdleHardware() {
if (CONFIGB(useStepperIdle)) {
iacMotor.initialize(CONFIGB(idle).stepperStepPin, CONFIGB(idle).stepperDirectionPin,
engineConfiguration->stepperDirectionPinMode, engineConfiguration->idleStepperReactionTime,
engineConfiguration->idleStepperTotalSteps, engineConfiguration->stepperEnablePin, logger);
// This greatly improves PID accuracy for steppers with a small number of steps
idlePositionSensitivityThreshold = 1.0f / engineConfiguration->idleStepperTotalSteps;
} else {
/**
* Start PWM for idleValvePin
*/
startSimplePwmExt(&idleSolenoid, "Idle Valve",
&engine->executor,
CONFIGB(idle).solenoidPin, &enginePins.idleSolenoidPin,
CONFIGB(idle).solenoidFrequency, CONFIGB(manIdlePosition) / 100,
applyIdleSolenoidPinState);
idlePositionSensitivityThreshold = 0.0f;
}
}
void startIdleThread(Logging*sharedLogger) {
logger = sharedLogger;
// todo: re-initialize idle pins on the fly
initIdleHardware();
//scheduleMsg(logger, "initial idle %d", idlePositionController.value);
instance.Start();
// this is neutral/no gear switch input. on Miata it's wired both to clutch pedal and neutral in gearbox
// this switch is not used yet
if (CONFIGB(clutchDownPin) != GPIO_UNASSIGNED) {
efiSetPadMode("clutch down switch", CONFIGB(clutchDownPin),
getInputMode(CONFIGB(clutchDownPinMode)));
}
if (CONFIGB(clutchUpPin) != GPIO_UNASSIGNED) {
efiSetPadMode("clutch up switch", CONFIGB(clutchUpPin),
getInputMode(CONFIGB(clutchUpPinMode)));
}
if (engineConfiguration->brakePedalPin != GPIO_UNASSIGNED) {
#if EFI_PROD_CODE || defined(__DOXYGEN__)
efiSetPadMode("brake pedal switch", engineConfiguration->brakePedalPin,
getInputMode(engineConfiguration->brakePedalPinMode));
#endif /* EFI_PROD_CODE */
}
addConsoleAction("idleinfo", showIdleInfo);
addConsoleActionII("blipidle", blipIdle);
// split this whole file into manual controller and auto controller? move these commands into the file
// which would be dedicated to just auto-controller?
addConsoleAction("idlebench", startIdleBench);
apply();
}
#endif /* EFI_IDLE_CONTROL */