1MHz software timer into F103 project #3840

This commit is contained in:
rusefillc 2022-01-25 22:40:50 -05:00
parent 5371a510b1
commit 33e0ece536
12 changed files with 1465 additions and 0 deletions

View File

@ -0,0 +1,279 @@
/**
* @file event_queue.cpp
* This is a data structure which keeps track of all pending events
* Implemented as a linked list, which is fine since the number of
* pending events is pretty low
* todo: MAYBE migrate to a better data structure, but that's low priority
*
* this data structure is NOT thread safe
*
* @date Apr 17, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "os_access.h"
#include "event_queue.h"
#include "efitime.h"
#include "os_util.h"
#if EFI_UNIT_TEST
extern int timeNowUs;
extern bool verboseMode;
#endif /* EFI_UNIT_TEST */
/**
* @return true if inserted into the head of the list
*/
bool EventQueue::insertTask(scheduling_s *scheduling, efitime_t timeX, action_s action) {
ScopePerf perf(PE::EventQueueInsertTask);
#if EFI_UNIT_TEST
assertListIsSorted();
#endif /* EFI_UNIT_TEST */
efiAssert(CUSTOM_ERR_ASSERT, action.getCallback() != NULL, "NULL callback", false);
// please note that simulator does not use this code at all - simulator uses signal_executor_sleep
if (scheduling->action) {
#if EFI_UNIT_TEST
if (verboseMode) {
printf("Already scheduled was %d\r\n", (int)scheduling->momentX);
printf("Already scheduled now %d\r\n", (int)timeX);
}
#endif /* EFI_UNIT_TEST */
return false;
}
scheduling->momentX = timeX;
scheduling->action = action;
if (head == NULL || timeX < head->momentX) {
// here we insert into head of the linked list
LL_PREPEND2(head, scheduling, nextScheduling_s);
#if EFI_UNIT_TEST
assertListIsSorted();
#endif /* EFI_UNIT_TEST */
return true;
} else {
// here we know we are not in the head of the list, let's find the position - linear search
scheduling_s *insertPosition = head;
while (insertPosition->nextScheduling_s != NULL && insertPosition->nextScheduling_s->momentX < timeX) {
insertPosition = insertPosition->nextScheduling_s;
}
scheduling->nextScheduling_s = insertPosition->nextScheduling_s;
insertPosition->nextScheduling_s = scheduling;
#if EFI_UNIT_TEST
assertListIsSorted();
#endif /* EFI_UNIT_TEST */
return false;
}
}
void EventQueue::remove(scheduling_s* scheduling) {
#if EFI_UNIT_TEST
assertListIsSorted();
#endif /* EFI_UNIT_TEST */
// Special case: event isn't scheduled, so don't cancel it
if (!scheduling->action) {
return;
}
// Special case: empty list, nothing to do
if (!head) {
return;
}
// Special case: is the item to remove at the head?
if (scheduling == head) {
head = head->nextScheduling_s;
scheduling->nextScheduling_s = nullptr;
scheduling->action = {};
} else {
auto prev = head; // keep track of the element before the one to remove, so we can link around it
auto current = prev->nextScheduling_s;
// Find our element
while (current && current != scheduling) {
prev = current;
current = current->nextScheduling_s;
}
// Walked off the end, this is an error since this *should* have been scheduled
if (!current) {
firmwareError(OBD_PCM_Processor_Fault, "EventQueue::remove didn't find element");
return;
}
efiAssertVoid(OBD_PCM_Processor_Fault, current == scheduling, "current not equal to scheduling");
// Link around the removed item
prev->nextScheduling_s = current->nextScheduling_s;
// Clean the item to remove
current->nextScheduling_s = nullptr;
current->action = {};
}
#if EFI_UNIT_TEST
assertListIsSorted();
#endif /* EFI_UNIT_TEST */
}
/**
* On this layer it does not matter which units are used - us, ms ot nt.
*
* This method is always invoked under a lock
* @return Get the timestamp of the soonest pending action, skipping all the actions in the past
*/
expected<efitime_t> EventQueue::getNextEventTime(efitime_t nowX) const {
if (head != NULL) {
if (head->momentX <= nowX) {
/**
* We are here if action timestamp is in the past. We should rarely be here since this 'getNextEventTime()' is
* always invoked by 'scheduleTimerCallback' which is always invoked right after 'executeAllPendingActions' - but still,
* for events which are really close to each other we would end up here.
*
* looks like we end up here after 'writeconfig' (which freezes the firmware) - we are late
* for the next scheduled event
*/
return nowX + lateDelay;
} else {
return head->momentX;
}
}
return unexpected;
}
/**
* See also maxPrecisionCallbackDuration for total hw callback time
*/
uint32_t maxEventCallbackDuration = 0;
/**
* Invoke all pending actions prior to specified timestamp
* @return number of executed actions
*/
int EventQueue::executeAll(efitime_t now) {
ScopePerf perf(PE::EventQueueExecuteAll);
int executionCounter = 0;
#if EFI_UNIT_TEST
assertListIsSorted();
#endif
bool didExecute;
do {
didExecute = executeOne(now);
executionCounter += didExecute ? 1 : 0;
} while (didExecute);
return executionCounter;
}
bool EventQueue::executeOne(efitime_t now) {
// Read the head every time - a previously executed event could
// have inserted something new at the head
scheduling_s* current = head;
// Queue is empty - bail
if (!current) {
return false;
}
// If the next event is far in the future, we'll reschedule
// and execute it next time.
// We do this when the next event is close enough that the overhead of
// resetting the timer and scheduling an new interrupt is greater than just
// waiting for the time to arrive. On current CPUs, this is reasonable to set
// around 10 microseconds.
if (current->momentX > now + lateDelay) {
return false;
}
// near future - spin wait for the event to happen and avoid the
// overhead of rescheduling the timer.
// yes, that's a busy wait but that's what we need here
while (current->momentX > getTimeNowNt()) {
UNIT_TEST_BUSY_WAIT_CALLBACK();
}
// step the head forward, unlink this element, clear scheduled flag
head = current->nextScheduling_s;
current->nextScheduling_s = nullptr;
// Grab the action but clear it in the event so we can reschedule from the action's execution
auto action = current->action;
current->action = {};
#if EFI_UNIT_TEST
printf("QUEUE: execute current=%d param=%d\r\n", (uintptr_t)current, (uintptr_t)action.getArgument());
#endif
// Execute the current element
{
ScopePerf perf2(PE::EventQueueExecuteCallback);
action.execute();
}
#if EFI_UNIT_TEST
// (tests only) Ensure we didn't break anything
assertListIsSorted();
#endif
return true;
}
int EventQueue::size(void) const {
scheduling_s *tmp;
int result;
LL_COUNT2(head, tmp, result, nextScheduling_s);
return result;
}
void EventQueue::assertListIsSorted() const {
scheduling_s *current = head;
while (current != NULL && current->nextScheduling_s != NULL) {
efiAssertVoid(CUSTOM_ERR_6623, current->momentX <= current->nextScheduling_s->momentX, "list order");
current = current->nextScheduling_s;
}
}
scheduling_s * EventQueue::getHead() {
return head;
}
// todo: reduce code duplication with another 'getElementAtIndexForUnitText'
scheduling_s *EventQueue::getElementAtIndexForUnitText(int index) {
scheduling_s * current;
LL_FOREACH2(head, current, nextScheduling_s)
{
if (index == 0)
return current;
index--;
}
return NULL;
}
void EventQueue::clear(void) {
// Flush the queue, resetting all scheduling_s as though we'd executed them
while(head) {
auto x = head;
// link next element to head
head = x->nextScheduling_s;
// Reset this element
x->momentX = 0;
x->nextScheduling_s = nullptr;
x->action = {};
}
head = nullptr;
}

View File

@ -0,0 +1,71 @@
/**
* @file event_queue.h
*
* @date Apr 17, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "scheduler.h"
#include "utlist.h"
#include "expected.h"
#pragma once
#define QUEUE_LENGTH_LIMIT 1000
// templates do not accept field names so we use a macro here
#define assertNotInListMethodBody(T, head, element, field) \
/* this code is just to validate state, no functional load*/ \
T * current; \
int counter = 0; \
LL_FOREACH2(head, current, field) { \
if (++counter > QUEUE_LENGTH_LIMIT) { \
firmwareError(CUSTOM_ERR_LOOPED_QUEUE, "Looped queue?"); \
return false; \
} \
if (current == element) { \
/** \
* for example, this might happen in case of sudden RPM change if event \
* was not scheduled by angle but was scheduled by time. In case of scheduling \
* by time with slow RPM the whole next fast revolution might be within the wait period \
*/ \
warning(CUSTOM_RE_ADDING_INTO_EXECUTION_QUEUE, "re-adding element into event_queue"); \
return true; \
} \
} \
return false;
/**
* Execution sorted linked list
*/
class EventQueue {
public:
// See comment in EventQueue::executeAll for info about lateDelay - it sets the
// time gap between events for which we will wait instead of rescheduling the next
// event in a group of events near one another.
EventQueue(efitime_t lateDelay = 0) : lateDelay(lateDelay) {}
/**
* O(size) - linear search in sorted linked list
*/
bool insertTask(scheduling_s *scheduling, efitime_t timeX, action_s action);
void remove(scheduling_s* scheduling);
int executeAll(efitime_t now);
bool executeOne(efitime_t now);
expected<efitime_t> getNextEventTime(efitime_t nowUs) const;
void clear(void);
int size(void) const;
scheduling_s *getElementAtIndexForUnitText(int index);
scheduling_s * getHead();
void assertListIsSorted() const;
private:
/**
* this list is sorted
*/
scheduling_s *head = nullptr;
const efitime_t lateDelay;
};

View File

@ -0,0 +1,184 @@
/**
* @file microsecond_timer.cpp
*
* Here we have a 1MHz timer dedicated to event scheduling. We are using one of the 32-bit timers here,
* so this timer can schedule events up to 4B/100M ~ 4000 seconds ~ 1 hour from current time.
*
* GPT5 timer clock: 84000000Hz
* If only it was a better multiplier of 2 (84000000 = 328125 * 256)
*
* @date Apr 14, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "microsecond_timer.h"
#include "port_microsecond_timer.h"
#if EFI_PROD_CODE
#include "periodic_task.h"
// Just in case we have a mechanism to validate that hardware timer is clocked right and all the
// conversions between wall clock and hardware frequencies are done right
// delay in milliseconds
#define TEST_CALLBACK_DELAY 10
// if hardware timer is 20% off we throw a critical error and call it a day
// maybe this threshold should be 5%? 10%?
#define TIMER_PRECISION_THRESHOLD 0.2
/**
* Maximum duration of complete timer callback, all pending events together
* See also 'maxEventCallbackDuration' for maximum duration of one event
*/
uint32_t maxPrecisionCallbackDuration = 0;
static efitick_t lastSetTimerTimeNt;
static bool isTimerPending = false;
static int timerCallbackCounter = 0;
static int timerRestartCounter = 0;
static const char * msg;
static int timerFreezeCounter = 0;
static int setHwTimerCounter = 0;
static bool hwStarted = false;
/**
* sets the alarm to the specified number of microseconds from now.
* This function should be invoked under kernel lock which would disable interrupts.
*/
void setHardwareSchedulerTimer(efitick_t nowNt, efitick_t setTimeNt) {
efiAssertVoid(OBD_PCM_Processor_Fault, hwStarted, "HW.started");
// How many ticks in the future is this event?
auto timeDeltaNt = setTimeNt - nowNt;
setHwTimerCounter++;
/**
* #259 BUG error: not positive deltaTimeNt
* Once in a while we night get an interrupt where we do not expect it
*/
if (timeDeltaNt <= 0) {
timerFreezeCounter++;
warning(CUSTOM_OBD_LOCAL_FREEZE, "local freeze cnt=%d", timerFreezeCounter);
}
// We need the timer to fire after we return - 1 doesn't work as it may actually schedule in the past
if (timeDeltaNt < US2NT(2)) {
timeDeltaNt = US2NT(2);
}
if (timeDeltaNt >= TOO_FAR_INTO_FUTURE_NT) {
// we are trying to set callback for too far into the future. This does not look right at all
firmwareError(CUSTOM_ERR_TIMER_OVERFLOW, "setHardwareSchedulerTimer() too far: %d", timeDeltaNt);
return;
}
// Skip scheduling if there's a firmware error active
if (hasFirmwareError()) {
return;
}
// Do the actual hardware-specific timer set operation
portSetHardwareSchedulerTimer(nowNt, setTimeNt);
lastSetTimerTimeNt = getTimeNowNt();
isTimerPending = true;
timerRestartCounter++;
}
void globalTimerCallback();
void portMicrosecondTimerCallback() {
timerCallbackCounter++;
isTimerPending = false;
uint32_t before = getTimeNowLowerNt();
globalTimerCallback();
uint32_t precisionCallbackDuration = getTimeNowLowerNt() - before;
if (precisionCallbackDuration > maxPrecisionCallbackDuration) {
maxPrecisionCallbackDuration = precisionCallbackDuration;
}
}
class MicrosecondTimerWatchdogController : public PeriodicTimerController {
void PeriodicTask() override {
efitick_t nowNt = getTimeNowNt();
if (nowNt >= lastSetTimerTimeNt + 2 * CORE_CLOCK) {
firmwareError(CUSTOM_ERR_SCHEDULING_ERROR, "watchdog: no events since %d", lastSetTimerTimeNt);
return;
}
msg = isTimerPending ? "No_cb too long" : "Timer not awhile";
// 2 seconds of inactivity would not look right
efiAssertVoid(CUSTOM_TIMER_WATCHDOG, nowNt < lastSetTimerTimeNt + 2 * CORE_CLOCK, msg);
}
int getPeriodMs() override {
return 500;
}
};
static MicrosecondTimerWatchdogController watchdogControllerInstance;
static scheduling_s watchDogBuddy;
static void watchDogBuddyCallback(void*) {
/**
* the purpose of this periodic activity is to make watchdogControllerInstance
* watchdog happy by ensuring that we have scheduler activity even in case of very broken configuration
* without any PWM or input pins
*/
engine->executor.scheduleForLater(&watchDogBuddy, MS2US(1000), watchDogBuddyCallback);
}
static volatile bool testSchedulingHappened = false;
static efitimems_t testSchedulingStart;
static void timerValidationCallback(void*) {
testSchedulingHappened = true;
efitimems_t actualTimeSinceScheduling = (currentTimeMillis() - testSchedulingStart);
if (absI(actualTimeSinceScheduling - TEST_CALLBACK_DELAY) > TEST_CALLBACK_DELAY * TIMER_PRECISION_THRESHOLD) {
firmwareError(CUSTOM_ERR_TIMER_TEST_CALLBACK_WRONG_TIME, "hwTimer broken precision: %ld ms", actualTimeSinceScheduling);
}
}
/**
* This method would validate that hardware timer callbacks happen with some reasonable precision
* helps to make sure our GPT hardware settings are somewhat right
*/
static void validateHardwareTimer() {
if (hasFirmwareError()) {
return;
}
testSchedulingStart = currentTimeMillis();
// to save RAM let's use 'watchDogBuddy' here once before we enable watchdog
engine->executor.scheduleForLater(&watchDogBuddy, MS2US(TEST_CALLBACK_DELAY), timerValidationCallback);
chThdSleepMilliseconds(TEST_CALLBACK_DELAY + 2);
if (!testSchedulingHappened) {
firmwareError(CUSTOM_ERR_TIMER_TEST_CALLBACK_NOT_HAPPENED, "hwTimer not alive");
}
}
void initMicrosecondTimer() {
portInitMicrosecondTimer();
hwStarted = true;
lastSetTimerTimeNt = getTimeNowNt();
validateHardwareTimer();
watchDogBuddyCallback(NULL);
#if EFI_EMULATE_POSITION_SENSORS
watchdogControllerInstance.Start();
#endif /* EFI_EMULATE_POSITION_SENSORS */
}
#endif /* EFI_PROD_CODE */

View File

@ -0,0 +1,14 @@
/**
* @file microsecond_timer.h
*
* @date Apr 14, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
void initMicrosecondTimer();
void setHardwareSchedulerTimer(efitick_t nowNt, efitick_t setTimeNt);
#define TOO_FAR_INTO_FUTURE_US (10 * US_PER_SECOND)
#define TOO_FAR_INTO_FUTURE_NT US2NT(TOO_FAR_INTO_FUTURE_US)

View File

@ -0,0 +1,45 @@
#include "pch.h"
#include "port_microsecond_timer.h"
#if EFI_PROD_CODE && HAL_USE_GPT
void portSetHardwareSchedulerTimer(efitick_t nowNt, efitick_t setTimeNt) {
int32_t deltaTimeUs = NT2US((int32_t)setTimeNt - (int32_t)nowNt);
// If already set, reset the timer
if (GPTDEVICE.state == GPT_ONESHOT) {
gptStopTimerI(&GPTDEVICE);
}
if (GPTDEVICE.state != GPT_READY) {
firmwareError(CUSTOM_HW_TIMER, "HW timer state %d", GPTDEVICE.state);
return;
}
// Start the timer
gptStartOneShotI(&GPTDEVICE, deltaTimeUs);
}
static void hwTimerCallback(GPTDriver*) {
portMicrosecondTimerCallback();
}
/*
* The specific 1MHz frequency is important here since 'setHardwareUsTimer' method takes microsecond parameter
* For any arbitrary frequency to work we would need an additional layer of conversion.
*/
static constexpr GPTConfig gpt5cfg = { 1000000, /* 1 MHz timer clock.*/
hwTimerCallback, /* Timer callback.*/
0, 0 };
void portInitMicrosecondTimer() {
gptStart(&GPTDEVICE, &gpt5cfg);
efiAssertVoid(CUSTOM_ERR_TIMER_STATE, GPTDEVICE.state == GPT_READY, "hw state");
}
#endif // EFI_PROD_CODE
// This implementation just uses the generic port counter - this usually returns a count of CPU cycles since start
uint32_t getTimeNowLowerNt() {
return port_rt_get_counter_value();
}

View File

@ -0,0 +1,13 @@
/**
* This file defines the API for the microsecond timer that a port needs to implement
*
* Do not call these functions directly, they should only be called by microsecond_timer.cpp
*/
#pragma once
void portInitMicrosecondTimer();
void portSetHardwareSchedulerTimer(efitick_t nowNt, efitick_t setTimeNt);
// The port should call this callback when the timer expires
void portMicrosecondTimerCallback();

View File

@ -0,0 +1,382 @@
/**
* @file pwm_generator_logic.cpp
*
* This PWM implementation keep track of when it would be the next time to toggle the signal.
* It constantly sets timer to that next toggle time, then sets the timer again from the callback, and so on.
*
* @date Mar 2, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "os_access.h"
#if EFI_PROD_CODE
#include "mpu_util.h"
#endif // EFI_PROD_CODE
// 1% duty cycle
#define ZERO_PWM_THRESHOLD 0.01
SimplePwm::SimplePwm()
{
seq.waveCount = 1;
seq.phaseCount = 2;
}
SimplePwm::SimplePwm(const char *name) : SimplePwm() {
this->name = name;
}
PwmConfig::PwmConfig() {
memset((void*)&scheduling, 0, sizeof(scheduling));
memset((void*)&safe, 0, sizeof(safe));
dbgNestingLevel = 0;
periodNt = NAN;
mode = PM_NORMAL;
memset(&outputPins, 0, sizeof(outputPins));
pwmCycleCallback = nullptr;
stateChangeCallback = nullptr;
executor = nullptr;
name = "[noname]";
arg = this;
}
/**
* This method allows you to change duty cycle on the fly
* @param dutyCycle value between 0 and 1
* See also setFrequency
*/
void SimplePwm::setSimplePwmDutyCycle(float dutyCycle) {
if (isStopRequested) {
// we are here in order to not change pin once PWM stop was requested
return;
}
if (cisnan(dutyCycle)) {
warning(CUSTOM_DUTY_INVALID, "%s spwd:dutyCycle %.2f", name, dutyCycle);
return;
} else if (dutyCycle < 0) {
warning(CUSTOM_DUTY_TOO_LOW, "%s dutyCycle too low %.2f", name, dutyCycle);
dutyCycle = 0;
} else if (dutyCycle > 1) {
warning(CUSTOM_PWM_DUTY_TOO_HIGH, "%s duty too high %.2f", name, dutyCycle);
dutyCycle = 1;
}
#if EFI_PROD_CODE
if (hardPwm) {
hardPwm->setDuty(dutyCycle);
return;
}
#endif
// Handle zero and full duty cycle. This will cause the PWM output to behave like a plain digital output.
if (dutyCycle == 0.0f && stateChangeCallback) {
// Manually fire falling edge
stateChangeCallback(0, arg);
} else if (dutyCycle == 1.0f && stateChangeCallback) {
// Manually fire rising edge
stateChangeCallback(1, arg);
}
if (dutyCycle < ZERO_PWM_THRESHOLD) {
mode = PM_ZERO;
} else if (dutyCycle > FULL_PWM_THRESHOLD) {
mode = PM_FULL;
} else {
mode = PM_NORMAL;
seq.setSwitchTime(0, dutyCycle);
}
}
/**
* returns absolute timestamp of state change
*/
static efitick_t getNextSwitchTimeNt(PwmConfig *state) {
efiAssert(CUSTOM_ERR_ASSERT, state->safe.phaseIndex < PWM_PHASE_MAX_COUNT, "phaseIndex range", 0);
int iteration = state->safe.iteration;
// we handle PM_ZERO and PM_FULL separately
float switchTime = state->mode == PM_NORMAL ? state->multiChannelStateSequence->getSwitchTime(state->safe.phaseIndex) : 1;
float periodNt = state->safe.periodNt;
#if DEBUG_PWM
efiPrintf("iteration=%d switchTime=%.2f period=%.2f", iteration, switchTime, period);
#endif /* DEBUG_PWM */
/**
* Once 'iteration' gets relatively high, we might lose calculation precision here.
* This is addressed by iterationLimit below, using any many cycles as possible without overflowing timeToSwitchNt
*/
uint32_t timeToSwitchNt = (uint32_t)((iteration + switchTime) * periodNt);
#if DEBUG_PWM
efiPrintf("start=%d timeToSwitch=%d", state->safe.start, timeToSwitch);
#endif /* DEBUG_PWM */
return state->safe.startNt + timeToSwitchNt;
}
void PwmConfig::setFrequency(float frequency) {
if (cisnan(frequency)) {
// explicit code just to be sure
periodNt = NAN;
return;
}
/**
* see #handleCycleStart()
* 'periodNt' is below 10 seconds here so we use 32 bit type for performance reasons
*/
periodNt = USF2NT(frequency2periodUs(frequency));
}
void PwmConfig::stop() {
isStopRequested = true;
}
void PwmConfig::handleCycleStart() {
if (safe.phaseIndex != 0) {
// https://github.com/rusefi/rusefi/issues/1030
firmwareError(CUSTOM_PWM_CYCLE_START, "handleCycleStart %d", safe.phaseIndex);
return;
}
if (pwmCycleCallback != NULL) {
pwmCycleCallback(this);
}
// Compute the maximum number of iterations without overflowing a uint32_t worth of timestamp
uint32_t iterationLimit = (0xFFFFFFFF / periodNt) - 2;
efiAssertVoid(CUSTOM_ERR_6580, periodNt != 0, "period not initialized");
efiAssertVoid(CUSTOM_ERR_6580, iterationLimit > 0, "iterationLimit invalid");
if (forceCycleStart || safe.periodNt != periodNt || safe.iteration == iterationLimit) {
/**
* period length has changed - we need to reset internal state
*/
safe.startNt = getTimeNowNt();
safe.iteration = 0;
safe.periodNt = periodNt;
forceCycleStart = false;
#if DEBUG_PWM
efiPrintf("state reset start=%d iteration=%d", state->safe.start, state->safe.iteration);
#endif
}
}
/**
* @return Next time for signal toggle
*/
efitick_t PwmConfig::togglePwmState() {
if (isStopRequested) {
return 0;
}
#if DEBUG_PWM
efiPrintf("togglePwmState phaseIndex=%d iteration=%d", safe.phaseIndex, safe.iteration);
efiPrintf("period=%.2f safe.period=%.2f", period, safe.periodNt);
#endif
if (cisnan(periodNt)) {
/**
* NaN period means PWM is paused, we also set the pin low
*/
stateChangeCallback(0, arg);
return getTimeNowNt() + MS2NT(NAN_FREQUENCY_SLEEP_PERIOD_MS);
}
if (mode != PM_NORMAL) {
// in case of ZERO or FULL we are always at starting index
safe.phaseIndex = 0;
}
if (safe.phaseIndex == 0) {
handleCycleStart();
}
/**
* Here is where the 'business logic' - the actual pin state change is happening
*/
int cbStateIndex;
if (mode == PM_NORMAL) {
// callback state index is offset by one. todo: why? can we simplify this?
cbStateIndex = safe.phaseIndex == 0 ? multiChannelStateSequence->phaseCount - 1 : safe.phaseIndex - 1;
} else if (mode == PM_ZERO) {
cbStateIndex = 0;
} else {
cbStateIndex = 1;
}
{
ScopePerf perf(PE::PwmConfigStateChangeCallback);
stateChangeCallback(cbStateIndex, arg);
}
efitick_t nextSwitchTimeNt = getNextSwitchTimeNt(this);
#if DEBUG_PWM
efiPrintf("%s: nextSwitchTime %d", state->name, nextSwitchTime);
#endif /* DEBUG_PWM */
// If we're very far behind schedule, restart the cycle fresh to avoid scheduling a huge pile of events all at once
// This can happen during config write or debugging where CPU is halted for multiple seconds
bool isVeryBehindSchedule = nextSwitchTimeNt < getTimeNowNt() - MS2NT(10);
safe.phaseIndex++;
if (isVeryBehindSchedule || safe.phaseIndex == multiChannelStateSequence->phaseCount || mode != PM_NORMAL) {
safe.phaseIndex = 0; // restart
safe.iteration++;
if (isVeryBehindSchedule) {
forceCycleStart = true;
}
}
#if EFI_UNIT_TEST
printf("PWM: nextSwitchTimeNt=%d phaseIndex=%d iteration=%d\r\n", nextSwitchTimeNt,
safe.phaseIndex,
safe.iteration);
#endif /* EFI_UNIT_TEST */
return nextSwitchTimeNt;
}
/**
* Main PWM loop: toggle pin & schedule next invocation
*
* First invocation happens on application thread
*/
static void timerCallback(PwmConfig *state) {
ScopePerf perf(PE::PwmGeneratorCallback);
state->dbgNestingLevel++;
efiAssertVoid(CUSTOM_ERR_6581, state->dbgNestingLevel < 25, "PWM nesting issue");
efitick_t switchTimeNt = state->togglePwmState();
if (switchTimeNt == 0) {
// we are here when PWM gets stopped
return;
}
if (state->executor == nullptr) {
firmwareError(CUSTOM_NULL_EXECUTOR, "exec on %s", state->name);
return;
}
state->executor->scheduleByTimestampNt(state->name, &state->scheduling, switchTimeNt, { timerCallback, state });
state->dbgNestingLevel--;
}
/**
* Incoming parameters are potentially just values on current stack, so we have to copy
* into our own permanent storage, right?
*/
void copyPwmParameters(PwmConfig *state, MultiChannelStateSequence const * seq) {
state->multiChannelStateSequence = seq;
if (state->mode == PM_NORMAL) {
state->multiChannelStateSequence->checkSwitchTimes(1);
}
}
/**
* this method also starts the timer cycle
* See also startSimplePwm
*/
void PwmConfig::weComplexInit(const char *msg, ExecutorInterface *executor,
MultiChannelStateSequence const * seq,
pwm_cycle_callback *pwmCycleCallback, pwm_gen_callback *stateChangeCallback) {
UNUSED(msg);
this->executor = executor;
isStopRequested = false;
efiAssertVoid(CUSTOM_ERR_6582, periodNt != 0, "period is not initialized");
if (seq->phaseCount == 0) {
firmwareError(CUSTOM_ERR_PWM_1, "signal length cannot be zero");
return;
}
if (seq->phaseCount > PWM_PHASE_MAX_COUNT) {
firmwareError(CUSTOM_ERR_PWM_2, "too many phases in PWM");
return;
}
efiAssertVoid(CUSTOM_ERR_6583, seq->waveCount > 0, "waveCount should be positive");
this->pwmCycleCallback = pwmCycleCallback;
this->stateChangeCallback = stateChangeCallback;
copyPwmParameters(this, seq);
safe.phaseIndex = 0;
safe.periodNt = -1;
safe.iteration = -1;
// let's start the indefinite callback loop of PWM generation
timerCallback(this);
}
void startSimplePwm(SimplePwm *state, const char *msg, ExecutorInterface *executor,
OutputPin *output, float frequency, float dutyCycle) {
efiAssertVoid(CUSTOM_ERR_PWM_STATE_ASSERT, state != NULL, "state");
efiAssertVoid(CUSTOM_ERR_PWM_DUTY_ASSERT, dutyCycle >= 0 && dutyCycle <= 1, "dutyCycle");
if (frequency < 1) {
warning(CUSTOM_OBD_LOW_FREQUENCY, "low frequency %.2f %s", frequency, msg);
return;
}
state->seq.setSwitchTime(0, dutyCycle);
state->seq.setSwitchTime(1, 1);
state->seq.setChannelState(0, 0, TV_FALL);
state->seq.setChannelState(0, 1, TV_RISE);
state->outputPins[0] = output;
state->setFrequency(frequency);
state->setSimplePwmDutyCycle(dutyCycle);
state->weComplexInit(msg, executor, &state->seq, NULL, (pwm_gen_callback*)applyPinState);
}
void startSimplePwmExt(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle) {
output->initPin(msg, brainPin);
startSimplePwm(state, msg, executor, output, frequency, dutyCycle);
}
/**
* @param dutyCycle value between 0 and 1
*/
void startSimplePwmHard(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle) {
#if EFI_PROD_CODE && HAL_USE_PWM
auto hardPwm = hardware_pwm::tryInitPin(msg, brainPin, frequency, dutyCycle);
if (hardPwm) {
state->hardPwm = hardPwm;
} else {
#endif
startSimplePwmExt(state, msg, executor, brainPin, output, frequency, dutyCycle);
#if EFI_PROD_CODE && HAL_USE_PWM
}
#endif
}
/**
* This method controls the actual hardware pins
*
* This method takes ~350 ticks.
*/
void applyPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ {
#if EFI_PROD_CODE
if (!engine->isPwmEnabled) {
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence->waveCount; channelIndex++) {
OutputPin *output = state->outputPins[channelIndex];
output->setValue(0);
}
return;
}
#endif // EFI_PROD_CODE
efiAssertVoid(CUSTOM_ERR_6663, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
efiAssertVoid(CUSTOM_ERR_6664, state->multiChannelStateSequence->waveCount <= PWM_PHASE_MAX_WAVE_PER_PWM, "invalid waveCount");
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence->waveCount; channelIndex++) {
OutputPin *output = state->outputPins[channelIndex];
int value = state->multiChannelStateSequence->getChannelState(channelIndex, stateIndex);
output->setValue(value);
}
}

View File

@ -0,0 +1,160 @@
/**
* @file pwm_generator_logic.h
*
* @date Mar 2, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include "state_sequence.h"
#include "global.h"
#include "scheduler.h"
#include "efi_gpio.h"
#define PERCENT_TO_DUTY(x) (x) * 0.01
#define NAN_FREQUENCY_SLEEP_PERIOD_MS 100
// 99% duty cycle
#define FULL_PWM_THRESHOLD 0.99
typedef struct {
/**
* a copy so that all phases are executed on the same period, even if another thread
* would be adjusting PWM parameters
*/
float periodNt;
/**
* Iteration counter
*/
int iteration;
/**
* Start time of current iteration
*/
efitick_t startNt;
int phaseIndex;
} pwm_config_safe_state_s;
class PwmConfig;
typedef void (pwm_cycle_callback)(PwmConfig *state);
typedef void (pwm_gen_callback)(int stateIndex, void *arg);
typedef enum {
PM_ZERO,
PM_NORMAL,
PM_FULL
} pwm_mode_e;
/**
* @brief Multi-channel software PWM output configuration
*/
class PwmConfig {
public:
PwmConfig();
void *arg = nullptr;
void weComplexInit(const char *msg,
ExecutorInterface *executor,
MultiChannelStateSequence const * seq,
pwm_cycle_callback *pwmCycleCallback,
pwm_gen_callback *callback);
ExecutorInterface *executor;
/**
* We need to handle zero duty cycle and 100% duty cycle in a special way
*/
pwm_mode_e mode;
bool isStopRequested = false;
/**
* @param use NAN frequency to pause PWM
*/
void setFrequency(float frequency);
void handleCycleStart();
const char *name;
// todo: 'outputPins' should be extracted away from here since technically one can want PWM scheduler without actual pin output
OutputPin *outputPins[PWM_PHASE_MAX_WAVE_PER_PWM];
MultiChannelStateSequence const * multiChannelStateSequence = nullptr;
efitick_t togglePwmState();
void stop();
int dbgNestingLevel;
scheduling_s scheduling;
pwm_config_safe_state_s safe;
/**
* this callback is invoked before each wave generation cycle
*/
pwm_cycle_callback *pwmCycleCallback;
/**
* this main callback is invoked when it's time to switch level on any of the output channels
*/
pwm_gen_callback *stateChangeCallback = nullptr;
private:
/**
* float value of PWM period
* PWM generation is not happening while this value is NAN
*/
float periodNt;
// Set if we are very far behind schedule and need to reset back to the beginning of a cycle to find our way
bool forceCycleStart = true;
};
struct hardware_pwm;
struct IPwm {
virtual void setSimplePwmDutyCycle(float dutyCycle) = 0;
};
class SimplePwm : public PwmConfig, public IPwm {
public:
SimplePwm();
explicit SimplePwm(const char *name);
void setSimplePwmDutyCycle(float dutyCycle) override;
MultiChannelStateSequenceWithData<2> seq;
hardware_pwm* hardPwm = nullptr;
};
/**
* default implementation of pwm_gen_callback which simply toggles the pins
*
*/
void applyPinState(int stateIndex, PwmConfig* state) /* pwm_gen_callback */;
/**
* Start a one-channel software PWM driver.
*
* This method should be called after scheduling layer is started by initSignalExecutor()
*/
void startSimplePwm(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
OutputPin *output,
float frequency, float dutyCycle);
/**
* initialize GPIO pin and start a one-channel software PWM driver.
*
* This method should be called after scheduling layer is started by initSignalExecutor()
*/
void startSimplePwmExt(SimplePwm *state,
const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output,
float frequency, float dutyCycle);
void startSimplePwmHard(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle);
void copyPwmParameters(PwmConfig *state, MultiChannelStateSequence const * seq);

View File

@ -0,0 +1,21 @@
/**
* @file scheduler.h
*
* @date October 1, 2020
*/
#include "pch.h"
#include "scheduler.h"
void action_s::execute() {
efiAssertVoid(CUSTOM_ERR_ASSERT, callback != NULL, "callback==null1");
callback(param);
}
schfunc_t action_s::getCallback() const {
return callback;
}
void * action_s::getArgument() const {
return param;
}

View File

@ -0,0 +1,69 @@
/**
* @file scheduler.h
*
* @date May 18, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
typedef void (*schfunc_t)(void *);
class action_s {
public:
// Default constructor constructs null action (ie, implicit bool conversion returns false)
action_s() = default;
// Allow implicit conversion from schfunc_t to action_s
action_s(schfunc_t callback) : action_s(callback, nullptr) { }
action_s(schfunc_t callback, void *param) : callback(callback), param(param) { }
// Allow any function that takes a single pointer parameter, so long as param is also of the same pointer type.
// This constructor means you shouldn't ever have to cast to schfunc_t on your own.
template <typename TArg>
action_s(void (*callback)(TArg*), TArg* param) : callback((schfunc_t)callback), param(param) { }
void execute();
schfunc_t getCallback() const;
void * getArgument() const;
operator bool() const {
return callback != nullptr;
}
private:
schfunc_t callback = nullptr;
void *param = nullptr;
};
/**
* This structure holds information about an event scheduled in the future: when to execute what callback with what parameters
*/
#pragma pack(push, 4)
struct scheduling_s {
#if EFI_SIGNAL_EXECUTOR_SLEEP
virtual_timer_t timer;
#endif /* EFI_SIGNAL_EXECUTOR_SLEEP */
/**
* timestamp represented as 64-bit value of ticks since MCU start
*/
volatile efitime_t momentX = 0;
/**
* Scheduler implementation uses a sorted linked list of these scheduling records.
*/
scheduling_s *nextScheduling_s = nullptr;
action_s action;
};
#pragma pack(pop)
struct ExecutorInterface {
/**
* see also scheduleByAngle
*/
virtual void scheduleByTimestamp(const char *msg, scheduling_s *scheduling, efitimeus_t timeUs, action_s action) = 0;
virtual void scheduleByTimestampNt(const char *msg, scheduling_s *scheduling, efitime_t timeUs, action_s action) = 0;
virtual void scheduleForLater(scheduling_s *scheduling, int delayUs, action_s action) = 0;
virtual void cancel(scheduling_s* scheduling) = 0;
};

View File

@ -0,0 +1,191 @@
/**
* @file SingleTimerExecutor.cpp
*
* This class combines the powers of a 1MHz hardware timer from microsecond_timer.cpp
* and pending events queue event_queue.cpp
*
* As of version 2.6.x, ChibiOS tick-based kernel is not capable of scheduling events
* with the level of precision we need, and realistically it should not.
*
* Update: actually newer ChibiOS has tickless mode and what we have here is pretty much the same thing :)
* open question if rusEfi should simply migrate to ChibiOS tickless scheduling (which would increase coupling with ChibiOS)
*
* See https://rusefi.com/forum/viewtopic.php?f=5&t=373&start=360#p30895
* for some performance data: with 'debug' firmware we spend about 5% of CPU in TIM5 handler which seem to be executed
* about 1500 times a second
*
* http://sourceforge.net/p/rusefi/tickets/24/
*
* @date: Apr 18, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "os_access.h"
#include "single_timer_executor.h"
#include "efitime.h"
#if EFI_SIGNAL_EXECUTOR_ONE_TIMER
#include "microsecond_timer.h"
#include "os_util.h"
uint32_t hwSetTimerDuration;
void globalTimerCallback() {
efiAssertVoid(CUSTOM_ERR_6624, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "lowstck#2y");
___engine.executor.onTimerCallback();
}
SingleTimerExecutor::SingleTimerExecutor()
// 8us is roughly the cost of the interrupt + overhead of a single timer event
: queue(US2NT(8))
{
}
void SingleTimerExecutor::scheduleForLater(scheduling_s *scheduling, int delayUs, action_s action) {
scheduleByTimestamp("scheduleForLater", scheduling, getTimeNowUs() + delayUs, action);
}
/**
* @brief Schedule an event at specific delay after now
*
* Invokes event callback after the specified amount of time.
* callback would be executed either on ISR thread or current thread if we would need to execute right away
*
* @param [in, out] scheduling Data structure to keep this event in the collection.
* @param [in] delayUs the number of microseconds before the output signal immediate output if delay is zero.
* @param [in] dwell the number of ticks of output duration.
*/
void SingleTimerExecutor::scheduleByTimestamp(const char *msg, scheduling_s *scheduling, efitimeus_t timeUs, action_s action) {
scheduleByTimestampNt(msg, scheduling, US2NT(timeUs), action);
}
void SingleTimerExecutor::scheduleByTimestampNt(const char *msg, scheduling_s* scheduling, efitime_t nt, action_s action) {
ScopePerf perf(PE::SingleTimerExecutorScheduleByTimestamp);
#if EFI_ENABLE_ASSERTS
int32_t deltaTimeNt = (int32_t)nt - getTimeNowLowerNt();
if (deltaTimeNt >= TOO_FAR_INTO_FUTURE_NT) {
// we are trying to set callback for too far into the future. This does not look right at all
firmwareError(CUSTOM_ERR_TASK_TIMER_OVERFLOW, "scheduleByTimestampNt() too far: %d %s", deltaTimeNt, msg);
return;
}
#endif
scheduleCounter++;
// Lock for queue insertion - we may already be locked, but that's ok
chibios_rt::CriticalSectionLocker csl;
bool needToResetTimer = queue.insertTask(scheduling, nt, action);
if (!reentrantFlag) {
executeAllPendingActions();
if (needToResetTimer) {
scheduleTimerCallback();
}
}
}
void SingleTimerExecutor::cancel(scheduling_s* scheduling) {
// Lock for queue removal - we may already be locked, but that's ok
chibios_rt::CriticalSectionLocker csl;
queue.remove(scheduling);
}
void SingleTimerExecutor::onTimerCallback() {
timerCallbackCounter++;
chibios_rt::CriticalSectionLocker csl;
executeAllPendingActions();
scheduleTimerCallback();
}
/*
* this private method is executed under lock
*/
void SingleTimerExecutor::executeAllPendingActions() {
ScopePerf perf(PE::SingleTimerExecutorDoExecute);
executeAllPendingActionsInvocationCounter++;
/**
* Let's execute actions we should execute at this point.
* reentrantFlag takes care of the use case where the actions we are executing are scheduling
* further invocations
*/
reentrantFlag = true;
/**
* in real life it could be that while we executing listeners time passes and it's already time to execute
* next listeners.
* TODO: add a counter & figure out a limit of iterations?
*/
// starts at -1 because do..while will run a minimum of once
executeCounter = -1;
bool didExecute;
do {
efitick_t nowNt = getTimeNowNt();
didExecute = queue.executeOne(nowNt);
// if we're stuck in a loop executing lots of events, panic!
if (executeCounter++ == 500) {
firmwareError(CUSTOM_ERR_LOCK_ISSUE, "Maximum scheduling run length exceeded - CPU load too high");
}
} while (didExecute);
maxExecuteCounter = maxI(maxExecuteCounter, executeCounter);
if (!isLocked()) {
firmwareError(CUSTOM_ERR_LOCK_ISSUE, "Someone has stolen my lock");
return;
}
reentrantFlag = false;
}
/**
* This method is always invoked under a lock
*/
void SingleTimerExecutor::scheduleTimerCallback() {
ScopePerf perf(PE::SingleTimerExecutorScheduleTimerCallback);
/**
* Let's grab fresh time value
*/
efitick_t nowNt = getTimeNowNt();
expected<efitick_t> nextEventTimeNt = queue.getNextEventTime(nowNt);
if (!nextEventTimeNt) {
return; // no pending events in the queue
}
efiAssertVoid(CUSTOM_ERR_6625, nextEventTimeNt.Value > nowNt, "setTimer constraint");
setHardwareSchedulerTimer(nowNt, nextEventTimeNt.Value);
}
void initSingleTimerExecutorHardware(void) {
initMicrosecondTimer();
}
void executorStatistics() {
if (engineConfiguration->debugMode == DBG_EXECUTOR) {
#if EFI_TUNER_STUDIO
engine->outputChannels.debugIntField1 = ___engine.executor.timerCallbackCounter;
engine->outputChannels.debugIntField2 = ___engine.executor.executeAllPendingActionsInvocationCounter;
engine->outputChannels.debugIntField3 = ___engine.executor.scheduleCounter;
engine->outputChannels.debugIntField4 = ___engine.executor.executeCounter;
engine->outputChannels.debugIntField5 = ___engine.executor.maxExecuteCounter;
#endif /* EFI_TUNER_STUDIO */
}
}
#endif /* EFI_SIGNAL_EXECUTOR_ONE_TIMER */

View File

@ -0,0 +1,36 @@
/**
* @file single_timer_executor.h
*
* @date: Apr 18, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include "scheduler.h"
#include "event_queue.h"
class SingleTimerExecutor final : public ExecutorInterface {
public:
SingleTimerExecutor();
void scheduleByTimestamp(const char *msg, scheduling_s *scheduling, efitimeus_t timeUs, action_s action) override;
void scheduleByTimestampNt(const char *msg, scheduling_s *scheduling, efitime_t timeNt, action_s action) override;
void scheduleForLater(scheduling_s *scheduling, int delayUs, action_s action) override;
void cancel(scheduling_s* scheduling) override;
void onTimerCallback();
int timerCallbackCounter = 0;
int scheduleCounter = 0;
int maxExecuteCounter = 0;
int executeCounter;
int executeAllPendingActionsInvocationCounter = 0;
private:
EventQueue queue;
bool reentrantFlag = false;
void executeAllPendingActions();
void scheduleTimerCallback();
};
void initSingleTimerExecutorHardware(void);
void executorStatistics();