/** * @file advance_map.cpp * * @date Mar 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "main.h" #include "advance_map.h" #include "interpolation.h" #include "efilib2.h" #include "engine_math.h" #include "tps.h" EXTERN_ENGINE; #if !EFI_UNIT_TEST || defined(__DOXYGEN__) extern TunerStudioOutputChannels tsOutputChannels; #endif static ign_Map3D_t advanceMap("advance"); static ign_Map3D_t iatAdvanceCorrectionMap("iat corr"); static int minCrankingRpm = 0; static const float iatTimingRpmBins[IGN_LOAD_COUNT] = {880, 1260, 1640, 2020, 2400, 2780, 3000, 3380, 3760, 4140, 4520, 5000, 5700, 6500, 7200, 8000}; //880 1260 1640 2020 2400 2780 3000 3380 3760 4140 4520 5000 5700 6500 7200 8000 static const ignition_table_t defaultIatTiming = { { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2}, { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2}, {3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 2, 2, 2, 2, 2}, { 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2}, { 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}, { 0, 0, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9, -0.9}, { -3.3, -3.4, -4.9, -4.9, -4.9, -4.9, -4.4, -4.4, -4.4, -4.4, -4.4, -0.9, -0.9, -0.9, -0.9, -0.9}, { -4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -2.4, -2.4, -2.4, -2.4, -2.4}, { -4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -2.9, -2.9, -2.9, -2.9, -2.9}, {-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9}, {-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9}, {-4.4, -4.9, -5.9, -5.9, -5.9, -5.9, -4.9, -4.9, -4.9, -4.9, -4.9, -3.9, -3.9, -3.9, -3.9, -3.9}, }; bool isStep1Condition(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { return boardConfiguration->enabledStep1Limiter && rpm >= engineConfiguration->step1rpm; } /** * @return ignition timing angle advance before TDC */ static angle_t getRunningAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) { if (CONFIG(timingMode) == TM_FIXED) return engineConfiguration->fixedTiming; engine->m.beforeAdvance = GET_TIMESTAMP(); if (cisnan(engineLoad)) { warning(CUSTOM_NAN_ENGINE_LOAD, "NaN engine load"); return NAN; } efiAssert(!cisnan(engineLoad), "invalid el", NAN); efiAssert(!cisnan(engineLoad), "invalid rpm", NAN); engine->m.beforeZeroTest = GET_TIMESTAMP(); engine->m.zeroTestTime = GET_TIMESTAMP() - engine->m.beforeZeroTest; if (isStep1Condition(rpm PASS_ENGINE_PARAMETER_SUFFIX)) { return engineConfiguration->step1timing; } float advanceAngle = advanceMap.getValue((float) rpm, engineLoad); // get advance from the separate table for Idle if (CONFIG(useSeparateAdvanceForIdle)) { float idleAdvance = interpolate2d("idleAdvance", rpm, config->idleAdvanceBins, config->idleAdvance, IDLE_ADVANCE_CURVE_SIZE); // interpolate between idle table and normal (running) table using TPS threshold float tps = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE); advanceAngle = interpolateClamped(0.0f, idleAdvance, boardConfiguration->idlePidDeactivationTpsThreshold, advanceAngle, tps); } engine->m.advanceLookupTime = GET_TIMESTAMP() - engine->m.beforeAdvance; return advanceAngle; } static angle_t getAdvanceCorrections(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { float iatCorrection; if (cisnan(engine->sensors.iat)) { iatCorrection = 0; } else { iatCorrection = iatAdvanceCorrectionMap.getValue((float) rpm, engine->sensors.iat); } if (engineConfiguration->debugMode == DBG_IGNITION_TIMING) { #if !EFI_UNIT_TEST || defined(__DOXYGEN__) tsOutputChannels.debugFloatField1 = iatCorrection; tsOutputChannels.debugFloatField2 = engine->engineState.cltTimingCorrection; tsOutputChannels.debugFloatField3 = engine->fsioTimingAdjustment; #endif } return iatCorrection + engine->fsioTimingAdjustment + engine->engineState.cltTimingCorrection // todo: uncomment once we get useable knock - engine->knockCount ; } /** * @return ignition timing angle advance before TDC for Cranking */ static angle_t getCrankingAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) { // get advance from the separate table for Cranking if (CONFIG(useSeparateAdvanceForCranking)) { return interpolate2d("crankingAdvance", rpm, CONFIG(crankingAdvanceBins), CONFIG(crankingAdvance), CRANKING_ADVANCE_CURVE_SIZE); } // Interpolate the cranking timing angle to the earlier running angle for faster engine start angle_t crankingToRunningTransitionAngle = getRunningAdvance(CONFIG(cranking.rpm), engineLoad PASS_ENGINE_PARAMETER_SUFFIX); // interpolate not from zero, but starting from min. possible rpm detected if (rpm < minCrankingRpm || minCrankingRpm == 0) minCrankingRpm = rpm; return interpolateClamped(minCrankingRpm, CONFIG(crankingTimingAngle), CONFIG(cranking.rpm), crankingToRunningTransitionAngle, rpm); } angle_t getAdvance(int rpm, float engineLoad DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(engineLoad)) { return 0; // any error should already be reported } angle_t angle; if (ENGINE(rpmCalculator).isCranking(PASS_ENGINE_PARAMETER_SIGNATURE)) { angle = getCrankingAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX); if (CONFIG(useAdvanceCorrectionsForCranking)) angle += getAdvanceCorrections(rpm PASS_ENGINE_PARAMETER_SUFFIX); } else { angle = getRunningAdvance(rpm, engineLoad PASS_ENGINE_PARAMETER_SUFFIX); angle += getAdvanceCorrections(rpm PASS_ENGINE_PARAMETER_SUFFIX); } angle -= engineConfiguration->ignitionOffset; fixAngle(angle, "getAdvance"); return angle; } void setDefaultIatTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { setLinearCurve(config->ignitionIatCorrLoadBins, IGN_LOAD_COUNT, -40, 110, 1); memcpy(config->ignitionIatCorrRpmBins, iatTimingRpmBins, sizeof(iatTimingRpmBins)); copyTimingTable(defaultIatTiming, config->ignitionIatCorrTable); } void prepareTimingMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) { advanceMap.init(config->ignitionTable, config->ignitionLoadBins, config->ignitionRpmBins); iatAdvanceCorrectionMap.init(config->ignitionIatCorrTable, config->ignitionIatCorrLoadBins, config->ignitionIatCorrRpmBins); } /** * @param octane gas octane number * @param bore in mm */ float getTopAdvanceForBore(chamber_style_e style, int octane, double compression, double bore) { int octaneCorrection; if ( octane <= 90) { octaneCorrection = -2; } else if (octane < 94) { octaneCorrection = -1; } else { octaneCorrection = 0; } int compressionCorrection; if (compression <= 9) { compressionCorrection = 2; } else if (compression <= 10) { compressionCorrection = 1; } else if (compression <= 11) { compressionCorrection = 0; } else { // compression ratio above 11 compressionCorrection = -2; } int base; if (style == CS_OPEN) { base = 33; } else if (style == CS_CLOSED) { base = 28; } else { // CS_SWIRL_TUMBLE base = 22; } float boreCorrection = (bore - 4 * 25.4) / 25.4 * 6; float result = base + octaneCorrection + compressionCorrection + boreCorrection; return ((int)(result * 10)) / 10.0; } float getAdvanceForRpm(int rpm, float advanceMax) { if (rpm >= 3000) return advanceMax; if (rpm < 600) return 10; return interpolate(600, 10, 3000, advanceMax, rpm); } #define round10(x) efiRound(x, 0.1) float getInitialAdvance(int rpm, float map, float advanceMax) { map = minF(map, 100); float advance = getAdvanceForRpm(rpm, advanceMax); if (rpm >= 3000) return round10(advance + 0.1 * (100 - map)); return round10(advance + 0.1 * (100 - map) * rpm / 3000); } /** * this method builds a good-enough base timing advance map bases on a number of heuristics */ void buildTimingMap(float advanceMax DECLARE_ENGINE_PARAMETER_SUFFIX) { if (engineConfiguration->fuelAlgorithm != LM_SPEED_DENSITY && engineConfiguration->fuelAlgorithm != LM_MAP) { warning(CUSTOM_WRONG_ALGORITHM, "wrong algorithm for MAP-based timing"); return; } /** * good enough (but do not trust us!) default timing map in case of MAP-based engine load */ for (int loadIndex = 0; loadIndex < IGN_LOAD_COUNT; loadIndex++) { float load = config->ignitionLoadBins[loadIndex]; for (int rpmIndex = 0;rpmIndexignitionRpmBins[rpmIndex]; config->ignitionTable[loadIndex][rpmIndex] = getInitialAdvance(rpm, load, advanceMax); } } }