/**
* @file electronic_throttle.cpp
* @brief Electronic Throttle driver
*
* @see test test_etb.cpp
*
*
* Limited user documentation at https://github.com/rusefi/rusefi_documentation/wiki/HOWTO_electronic_throttle_body
*
* todo: make this more universal if/when we get other hardware options
*
* Sep 2019 two-wire TLE9201 official driving around the block! https://www.youtube.com/watch?v=1vCeICQnbzI
* May 2019 two-wire TLE7209 now behaves same as three-wire VNH2SP30 "eBay red board" on BOSCH 0280750009
* Apr 2019 two-wire TLE7209 support added
* Mar 2019 best results so far achieved with three-wire H-bridges like VNH2SP30 on BOSCH 0280750009
* Jan 2019 actually driven around the block but still need some work.
* Jan 2017 status:
* Electronic throttle body with it's spring is definitely not linear - both P and I factors of PID are required to get any results
* PID implementation tested on a bench only
* it is believed that more than just PID would be needed, as is this is probably
* not usable on a real vehicle. Needs to be tested :)
*
* https://raw.githubusercontent.com/wiki/rusefi/rusefi_documentation/oem_docs/VAG/Bosch_0280750009_pinout.jpg
*
* ETB is controlled according to pedal position input (pedal position sensor is a potentiometer)
* pedal 0% means pedal not pressed / idle
* pedal 100% means pedal all the way down
* (not TPS - not the one you can calibrate in TunerStudio)
*
*
* See also pid.cpp
*
* Relevant console commands:
*
* ETB_BENCH_ENGINE
* set engine_type 58
*
* enable verbose_etb
* disable verbose_etb
* ethinfo
* set mock_pedal_position X
*
*
* set debug_mode 17
* for PID outputs
*
* set etb_p X
* set etb_i X
* set etb_d X
* set etb_o X
*
* set_etb_duty X
*
* http://rusefi.com/forum/viewtopic.php?f=5&t=592
*
* @date Dec 7, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see .
*/
#include "global.h"
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle.h"
#include "tps.h"
#include "sensor.h"
#include "dc_motor.h"
#include "dc_motors.h"
#include "pid_auto_tune.h"
#if defined(HAS_OS_ACCESS)
#error "Unexpected OS ACCESS HERE"
#endif
#ifndef ETB_MAX_COUNT
#define ETB_MAX_COUNT 2
#endif /* ETB_MAX_COUNT */
static LoggingWithStorage logger("ETB");
static pedal2tps_t pedal2tpsMap("Pedal2Tps", 1);
EXTERN_ENGINE;
static bool startupPositionError = false;
#define STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD 5
static SensorType indexToTpsSensor(size_t index) {
switch(index) {
case 0: return SensorType::Tps1;
default: return SensorType::Tps2;
}
}
static percent_t directPwmValue = NAN;
static percent_t currentEtbDuty;
#define ETB_DUTY_LIMIT 0.9
// this macro clamps both positive and negative percentages from about -100% to 100%
#define ETB_PERCENT_TO_DUTY(x) (clampF(-ETB_DUTY_LIMIT, 0.01f * (x), ETB_DUTY_LIMIT))
void EtbController::init(DcMotor *motor, int ownIndex, pid_s *pidParameters, const ValueProvider3D* pedalMap) {
m_motor = motor;
m_myIndex = ownIndex;
m_pid.initPidClass(pidParameters);
m_pedalMap = pedalMap;
}
void EtbController::reset() {
m_shouldResetPid = true;
}
void EtbController::onConfigurationChange(pid_s* previousConfiguration) {
if (m_motor && m_pid.isSame(previousConfiguration)) {
m_shouldResetPid = true;
}
}
void EtbController::showStatus(Logging* logger) {
m_pid.showPidStatus(logger, "ETB");
}
int EtbController::getPeriodMs() {
return GET_PERIOD_LIMITED(&engineConfiguration->etb);
}
expected EtbController::observePlant() const {
return Sensor::get(indexToTpsSensor(m_myIndex));
}
void EtbController::setIdlePosition(percent_t pos) {
m_idlePosition = pos;
}
expected EtbController::getSetpoint() const {
// A few extra preconditions if throttle control is invalid
if (startupPositionError) {
return unexpected;
}
if (engineConfiguration->pauseEtbControl) {
return unexpected;
}
// If the pedal map hasn't been set, we can't provide a setpoint.
if (!m_pedalMap) {
return unexpected;
}
auto pedalPosition = Sensor::get(SensorType::AcceleratorPedal);
if (!pedalPosition.Valid) {
return unexpected;
}
float sanitizedPedal = clampF(0, pedalPosition.Value, 100);
float rpm = GET_RPM();
float targetFromTable = m_pedalMap->getValue(rpm / RPM_1_BYTE_PACKING_MULT, sanitizedPedal);
engine->engineState.targetFromTable = targetFromTable;
percent_t etbIdlePosition = clampF(
0,
CONFIG(useETBforIdleControl) ? m_idlePosition : 0,
100
);
percent_t etbIdleAddition = 0.01f * CONFIG(etbIdleThrottleRange) * etbIdlePosition;
// Interpolate so that the idle adder just "compresses" the throttle's range upward.
// [0, 100] -> [idle, 100]
// 0% target from table -> idle position as target
// 100% target from table -> 100% target position
percent_t targetPosition = interpolateClamped(0, etbIdleAddition, 100, 100, targetFromTable);
#if EFI_TUNER_STUDIO
if (m_myIndex == 0) {
tsOutputChannels.etbTarget = targetPosition;
}
#endif
return targetPosition;
}
expected EtbController::getOpenLoop(percent_t target) const {
float ff = interpolate2d("etbb", target, engineConfiguration->etbBiasBins, engineConfiguration->etbBiasValues);
engine->engineState.etbFeedForward = ff;
return ff;
}
expected EtbController::getClosedLoopAutotune(percent_t actualThrottlePosition) {
// Estimate gain at 60% position - this should be well away from the spring and in the linear region
bool isPositive = actualThrottlePosition > 60.0f;
float autotuneAmplitude = 20;
// End of cycle - record & reset
if (!isPositive && m_lastIsPositive) {
efitick_t now = getTimeNowNt();
// Determine period
float tu = NT2US((float)(now - m_cycleStartTime)) / 1e6;
m_cycleStartTime = now;
// Determine amplitude
float a = m_maxCycleTps - m_minCycleTps;
// Filter - it's pretty noisy since the ultimate period is not very many loop periods
constexpr float alpha = 0.05;
m_a = alpha * a + (1 - alpha) * m_a;
m_tu = alpha * tu + (1 - alpha) * m_tu;
// Reset bounds
m_minCycleTps = 100;
m_maxCycleTps = 0;
// Math is for Åström–Hägglund (relay) auto tuning
// https://warwick.ac.uk/fac/cross_fac/iatl/reinvention/archive/volume5issue2/hornsey
// Publish to TS state
#if EFI_TUNER_STUDIO
if (engineConfiguration->debugMode == DBG_ETB_AUTOTUNE) {
// a - amplitude of output (TPS %)
tsOutputChannels.debugFloatField1 = m_a;
float b = 2 * autotuneAmplitude;
// b - amplitude of input (Duty cycle %)
tsOutputChannels.debugFloatField2 = b;
// Tu - oscillation period (seconds)
tsOutputChannels.debugFloatField3 = m_tu;
// Ultimate gain per A-H relay tuning rule
// Ku
float ku = 4 * b / (3.14159f * m_a);
tsOutputChannels.debugFloatField4 = ku;
// The multipliers below are somewhere near the "no overshoot"
// and "some overshoot" flavors of the Ziegler-Nichols method
// Kp
tsOutputChannels.debugFloatField5 = 0.35f * ku;
// Ki
tsOutputChannels.debugFloatField6 = 0.25f * ku / m_tu;
// Kd
tsOutputChannels.debugFloatField7 = 0.08f * ku * m_tu;
}
#endif
}
m_lastIsPositive = isPositive;
// Find the min/max of each cycle
if (actualThrottlePosition < m_minCycleTps) {
m_minCycleTps = actualThrottlePosition;
}
if (actualThrottlePosition > m_maxCycleTps) {
m_maxCycleTps = actualThrottlePosition;
}
// Bang-bang control the output to induce oscillation
return autotuneAmplitude * (isPositive ? -1 : 1);
}
expected EtbController::getClosedLoop(percent_t target, percent_t actualThrottlePosition) {
if (m_shouldResetPid) {
m_pid.reset();
m_shouldResetPid = false;
}
// Only report the 0th throttle
if (m_myIndex == 0) {
#if EFI_TUNER_STUDIO
// Error is positive if the throttle needs to open further
tsOutputChannels.etb1Error = target - actualThrottlePosition;
#endif /* EFI_TUNER_STUDIO */
}
// Only allow autotune with stopped engine
if (GET_RPM() == 0 && engine->etbAutoTune) {
return getClosedLoopAutotune(actualThrottlePosition);
} else {
// Normal case - use PID to compute closed loop part
return m_pid.getOutput(target, actualThrottlePosition);
}
}
void EtbController::setOutput(expected outputValue) {
#if EFI_TUNER_STUDIO
// Only report first-throttle stats
if (m_myIndex == 0) {
tsOutputChannels.etb1DutyCycle = outputValue.value_or(0);
}
#endif
if (!m_motor) return;
if (outputValue) {
m_motor->enable();
m_motor->set(ETB_PERCENT_TO_DUTY(outputValue.Value));
} else {
m_motor->disable();
}
}
void EtbController::PeriodicTask() {
#if EFI_TUNER_STUDIO
// Only debug throttle #0
if (m_myIndex == 0) {
// set debug_mode 17
if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_PID) {
m_pid.postState(&tsOutputChannels);
tsOutputChannels.debugIntField5 = engine->engineState.etbFeedForward;
} else if (engineConfiguration->debugMode == DBG_ELECTRONIC_THROTTLE_EXTRA) {
// set debug_mode 29
tsOutputChannels.debugFloatField1 = directPwmValue;
}
}
#endif /* EFI_TUNER_STUDIO */
if (!cisnan(directPwmValue)) {
m_motor->set(directPwmValue);
return;
}
if (engineConfiguration->debugMode == DBG_ETB_LOGIC) {
#if EFI_TUNER_STUDIO
tsOutputChannels.debugFloatField1 = engine->engineState.targetFromTable;
tsOutputChannels.debugFloatField2 = engine->engineState.idle.etbIdleAddition;
#endif /* EFI_TUNER_STUDIO */
}
m_pid.iTermMin = engineConfiguration->etb_iTermMin;
m_pid.iTermMax = engineConfiguration->etb_iTermMax;
if (engineConfiguration->isVerboseETB) {
m_pid.showPidStatus(&logger, "ETB");
}
update();
DISPLAY_STATE(Engine)
DISPLAY_TEXT(Electronic_Throttle);
DISPLAY_SENSOR(TPS)
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Pedal);
DISPLAY_SENSOR(PPS);
DISPLAY(DISPLAY_CONFIG(throttlePedalPositionAdcChannel));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Feed_forward);
DISPLAY(DISPLAY_FIELD(etbFeedForward));
DISPLAY_TEXT(eol);
DISPLAY_STATE(ETB_pid)
DISPLAY_TEXT(input);
DISPLAY(DISPLAY_FIELD(input));
DISPLAY_TEXT(Output);
DISPLAY(DISPLAY_FIELD(output));
DISPLAY_TEXT(iTerm);
DISPLAY(DISPLAY_FIELD(iTerm));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_FIELD(errorAmplificationCoef));
DISPLAY(DISPLAY_FIELD(previousError));
DISPLAY_TEXT(eol);
DISPLAY_TEXT(Settings);
DISPLAY(DISPLAY_CONFIG(ETB_PFACTOR));
DISPLAY(DISPLAY_CONFIG(ETB_IFACTOR));
DISPLAY(DISPLAY_CONFIG(ETB_DFACTOR));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_CONFIG(ETB_OFFSET));
DISPLAY(DISPLAY_CONFIG(ETB_PERIODMS));
DISPLAY_TEXT(eol);
DISPLAY(DISPLAY_CONFIG(ETB_MINVALUE));
DISPLAY(DISPLAY_CONFIG(ETB_MAXVALUE));
/* DISPLAY_ELSE */
DISPLAY_TEXT(No_Pedal_Sensor);
/* DISPLAY_ENDIF */
}
// real implementation (we mock for some unit tests)
EtbController etbControllers[ETB_COUNT];
static void showEthInfo(void) {
#if EFI_PROD_CODE
if (engine->etbActualCount == 0) {
scheduleMsg(&logger, "ETB DISABLED since no PPS");
}
scheduleMsg(&logger, "etbAutoTune=%d",
engine->etbAutoTune);
scheduleMsg(&logger, "TPS=%.2f", Sensor::get(SensorType::Tps1).value_or(0));
scheduleMsg(&logger, "etbControlPin1=%s duty=%.2f freq=%d",
hwPortname(CONFIG(etbIo[0].controlPin1)),
currentEtbDuty,
engineConfiguration->etbFreq);
scheduleMsg(&logger, "dir1=%s", hwPortname(CONFIG(etbIo[0].directionPin1)));
scheduleMsg(&logger, "dir2=%s", hwPortname(CONFIG(etbIo[0].directionPin2)));
showDcMotorInfo(&logger);
#endif /* EFI_PROD_CODE */
}
static void etbPidReset(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
for (int i = 0 ; i < engine->etbActualCount; i++) {
engine->etbControllers[i]->reset();
}
}
#if !EFI_UNIT_TEST
/**
* At the moment there are TWO ways to use this
* set_etb_duty X
* set etb X
* manual duty cycle control without PID. Percent value from 0 to 100
*/
void setThrottleDutyCycle(percent_t level) {
scheduleMsg(&logger, "setting ETB duty=%f%%", level);
if (cisnan(level)) {
directPwmValue = NAN;
return;
}
float dc = ETB_PERCENT_TO_DUTY(level);
directPwmValue = dc;
for (int i = 0 ; i < engine->etbActualCount; i++) {
setDcMotorDuty(i, dc);
}
scheduleMsg(&logger, "duty ETB duty=%f", dc);
}
static void setEtbFrequency(int frequency) {
engineConfiguration->etbFreq = frequency;
for (int i = 0 ; i < engine->etbActualCount; i++) {
setDcMotorFrequency(i, frequency);
}
}
static void etbReset() {
scheduleMsg(&logger, "etbReset");
for (int i = 0 ; i < engine->etbActualCount; i++) {
setDcMotorDuty(i, 0);
}
etbPidReset();
}
#endif /* EFI_PROD_CODE */
#if !EFI_UNIT_TEST
/**
* set etb_p X
*/
void setEtbPFactor(float value) {
engineConfiguration->etb.pFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_i X
*/
void setEtbIFactor(float value) {
engineConfiguration->etb.iFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_d X
*/
void setEtbDFactor(float value) {
engineConfiguration->etb.dFactor = value;
etbPidReset();
showEthInfo();
}
/**
* set etb_o X
*/
void setEtbOffset(int value) {
engineConfiguration->etb.offset = value;
etbPidReset();
showEthInfo();
}
#endif /* EFI_UNIT_TEST */
/**
* This specific throttle has default position of about 7% open
*/
static const float boschBiasBins[] = {
0, 1, 5, 7, 14, 65, 66, 100
};
static const float boschBiasValues[] = {
-15, -15, -10, 0, 19, 20, 26, 28
};
void setBoschVNH2SP30Curve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
copyArray(CONFIG(etbBiasBins), boschBiasBins);
copyArray(CONFIG(etbBiasValues), boschBiasValues);
}
void setDefaultEtbParameters(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
CONFIG(etbIdleThrottleRange) = 5;
setLinearCurve(config->pedalToTpsPedalBins, /*from*/0, /*to*/100, 1);
setLinearCurve(config->pedalToTpsRpmBins, /*from*/0, /*to*/8000 / RPM_1_BYTE_PACKING_MULT, 1);
for (int pedalIndex = 0;pedalIndexpedalToTpsTable[pedalIndex][rpmIndex] = config->pedalToTpsPedalBins[pedalIndex];
}
}
engineConfiguration->throttlePedalUpVoltage = 0; // that's voltage, not ADC like with TPS
engineConfiguration->throttlePedalWOTVoltage = 6; // that's voltage, not ADC like with TPS
engineConfiguration->etb = {
1, // Kp
10, // Ki
0.05, // Kd
0, // offset
(1000 / DEFAULT_ETB_LOOP_FREQUENCY),
-100, 100 // min/max
};
engineConfiguration->etb_iTermMin = -300;
engineConfiguration->etb_iTermMax = 300;
}
void onConfigurationChangeElectronicThrottleCallback(engine_configuration_s *previousConfiguration) {
for (int i = 0; i < ETB_COUNT; i++) {
etbControllers[i].onConfigurationChange(&previousConfiguration->etb);
}
}
#if EFI_PROD_CODE && 0
static void setTempOutput(float value) {
autoTune.output = value;
}
/**
* set_etbat_step X
*/
static void setAutoStep(float value) {
autoTune.reset();
autoTune.SetOutputStep(value);
}
#endif /* EFI_PROD_CODE */
static const float defaultBiasBins[] = {
0, 1, 2, 4, 7, 98, 99, 100
};
static const float defaultBiasValues[] = {
-20, -18, -17, 0, 20, 21, 22, 25
};
void setDefaultEtbBiasCurve(DECLARE_CONFIG_PARAMETER_SIGNATURE) {
copyArray(CONFIG(etbBiasBins), defaultBiasBins);
copyArray(CONFIG(etbBiasValues), defaultBiasValues);
}
void unregisterEtbPins() {
// todo: we probably need an implementation here?!
}
void doInitElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
efiAssertVoid(OBD_PCM_Processor_Fault, engine->etbControllers != NULL, "etbControllers NULL");
#if EFI_PROD_CODE
addConsoleAction("ethinfo", showEthInfo);
addConsoleAction("etbreset", etbReset);
addConsoleActionI("etb_freq", setEtbFrequency);
#endif /* EFI_PROD_CODE */
// If you don't have a pedal, we have no business here.
if (!Sensor::hasSensor(SensorType::AcceleratorPedal)) {
return;
}
pedal2tpsMap.init(config->pedalToTpsTable, config->pedalToTpsPedalBins, config->pedalToTpsRpmBins);
engine->etbActualCount = Sensor::hasSensor(SensorType::Tps2) ? 2 : 1;
for (int i = 0 ; i < engine->etbActualCount; i++) {
auto motor = initDcMotor(i PASS_ENGINE_PARAMETER_SUFFIX);
// If this motor is actually set up, init the etb
if (motor)
{
engine->etbControllers[i]->init(motor, i, &engineConfiguration->etb, &pedal2tpsMap);
INJECT_ENGINE_REFERENCE(engine->etbControllers[i]);
}
}
#if 0 && ! EFI_UNIT_TEST
percent_t startupThrottlePosition = getTPS(PASS_ENGINE_PARAMETER_SIGNATURE);
if (absF(startupThrottlePosition - engineConfiguration->etbNeutralPosition) > STARTUP_NEUTRAL_POSITION_ERROR_THRESHOLD) {
/**
* Unexpected electronic throttle start-up position is worth a critical error
*/
firmwareError(OBD_Throttle_Actuator_Control_Range_Performance_Bank_1, "startup ETB position %.2f not %d",
startupThrottlePosition,
engineConfiguration->etbNeutralPosition);
startupPositionError = true;
}
#endif /* EFI_UNIT_TEST */
#if EFI_PROD_CODE
if (engineConfiguration->etbCalibrationOnStart) {
for (int i = 0 ; i < engine->etbActualCount; i++) {
setDcMotorDuty(i, 70);
chThdSleep(600);
// todo: grab with proper index
grabTPSIsWideOpen();
setDcMotorDuty(i, -70);
chThdSleep(600);
// todo: grab with proper index
grabTPSIsClosed();
}
}
// manual duty cycle control without PID. Percent value from 0 to 100
addConsoleActionNANF(CMD_ETB_DUTY, setThrottleDutyCycle);
#endif /* EFI_PROD_CODE */
etbPidReset(PASS_ENGINE_PARAMETER_SIGNATURE);
for (int i = 0 ; i < engine->etbActualCount; i++) {
engine->etbControllers[i]->Start();
}
}
void initElectronicThrottle(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
if (hasFirmwareError()) {
return;
}
for (int i = 0; i < ETB_COUNT; i++) {
engine->etbControllers[i] = &etbControllers[i];
}
doInitElectronicThrottle(PASS_ENGINE_PARAMETER_SIGNATURE);
}
void setEtbIdlePosition(percent_t pos DECLARE_ENGINE_PARAMETER_SUFFIX) {
for (int i = 0; i < ETB_COUNT; i++) {
auto etb = engine->etbControllers[i];
if (etb) {
etb->setIdlePosition(pos);
}
}
}
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */