/** * @file fuel_math.cpp * @brief Fuel amount calculation logic * * * @date May 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . * */ #include "global.h" #include "airmass.h" #include "alphan_airmass.h" #include "maf_airmass.h" #include "speed_density_airmass.h" #include "fuel_math.h" #include "fuel_computer.h" #include "injector_model.h" #include "interpolation.h" #include "engine_configuration.h" #include "allsensors.h" #include "engine_math.h" #include "rpm_calculator.h" #include "speed_density.h" #include "perf_trace.h" #include "sensor.h" #include "speed_density_base.h" EXTERN_ENGINE; fuel_Map3D_t fuelPhaseMap("fl ph"); extern fuel_Map3D_t veMap; extern lambda_Map3D_t lambdaMap; extern baroCorr_Map3D_t baroCorrMap; mapEstimate_Map3D_t mapEstimationTable("map est"); #if EFI_ENGINE_CONTROL DISPLAY_STATE(Engine) DISPLAY(DISPLAY_FIELD(sparkDwell)) DISPLAY(DISPLAY_FIELD(dwellAngle)) DISPLAY(DISPLAY_FIELD(cltTimingCorrection)) DISPLAY_TEXT(eol); DISPLAY(DISPLAY_IF(isCrankingState)) float getCrankingFuel3( float baseFuel, uint32_t revolutionCounterSinceStart DECLARE_ENGINE_PARAMETER_SUFFIX) { // these magic constants are in Celsius float baseCrankingFuel; if (engineConfiguration->useRunningMathForCranking) { baseCrankingFuel = baseFuel; } else { // parameter is in milligrams, convert to grams baseCrankingFuel = engineConfiguration->cranking.baseFuel * 0.001f; } /** * Cranking fuel changes over time */ DISPLAY_TEXT(Duration_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(durationCoefficient) = interpolate2d(revolutionCounterSinceStart, config->crankingCycleBins, config->crankingCycleCoef); DISPLAY_TEXT(eol); /** * Cranking fuel is different depending on engine coolant temperature * If the sensor is failed, use 20 deg C */ auto clt = Sensor::get(SensorType::Clt); DISPLAY_TEXT(Coolant_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(coolantTemperatureCoefficient) = interpolate2d(clt.value_or(20), config->crankingFuelBins, config->crankingFuelCoef); DISPLAY_SENSOR(CLT); DISPLAY_TEXT(eol); auto tps = Sensor::get(SensorType::DriverThrottleIntent); DISPLAY_TEXT(TPS_coef); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? 1 : interpolate2d(tps.Value, engineConfiguration->crankingTpsBins, engineConfiguration->crankingTpsCoef); /* engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(tpsCoefficient) = tps.Valid ? interpolate2d(tps.Value, engineConfiguration->crankingTpsBins, engineConfiguration->crankingTpsCoef) : 1; // in case of failed TPS, don't correct.*/ DISPLAY_SENSOR(TPS); DISPLAY_TEXT(eol); floatms_t crankingFuel = baseCrankingFuel * engine->engineState.cranking.durationCoefficient * engine->engineState.cranking.coolantTemperatureCoefficient * engine->engineState.cranking.tpsCoefficient; DISPLAY_TEXT(Cranking_fuel); engine->engineState.DISPLAY_PREFIX(cranking).DISPLAY_FIELD(fuel) = crankingFuel * 1000; if (crankingFuel <= 0) { warning(CUSTOM_ERR_ZERO_CRANKING_FUEL, "Cranking fuel value %f", crankingFuel); } return crankingFuel; } /* DISPLAY_ELSE */ floatms_t getRunningFuel(floatms_t baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetRunningFuel); DISPLAY_TEXT(Base_fuel); ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(baseFuel)) = baseFuel; DISPLAY_TEXT(eol); DISPLAY_TEXT(Intake_coef); float iatCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(intakeTemperatureCoefficient)); DISPLAY_SENSOR(IAT); DISPLAY_TEXT(eol); DISPLAY_TEXT(Coolant_coef); float cltCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(coolantTemperatureCoefficient)); DISPLAY_SENSOR(CLT); DISPLAY_TEXT(eol); DISPLAY_TEXT(Post_cranking_coef); float postCrankingFuelCorrection = ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(postCrankingFuelCorrection)); DISPLAY_TEXT(eol); float baroCorrection = ENGINE(engineState.baroCorrection); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(iatCorrection), "NaN iatCorrection", 0); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(cltCorrection), "NaN cltCorrection", 0); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(postCrankingFuelCorrection), "NaN postCrankingFuelCorrection", 0); floatms_t runningFuel = baseFuel * baroCorrection * iatCorrection * cltCorrection * postCrankingFuelCorrection * ENGINE(engineState.running.pidCorrection); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(runningFuel), "NaN runningFuel", 0); DISPLAY_TEXT(eol); DISPLAY_TEXT(Running_fuel); ENGINE(engineState.DISPLAY_PREFIX(running).DISPLAY_FIELD(fuel)) = runningFuel * 1000; DISPLAY_TEXT(eol); DISPLAY_TEXT(Injector_lag); DISPLAY(DISPLAY_PREFIX(running).DISPLAY_FIELD(injectorLag)); DISPLAY_SENSOR(VBATT); return runningFuel; } /* DISPLAY_ENDIF */ static SpeedDensityAirmass sdAirmass(veMap, mapEstimationTable); static MafAirmass mafAirmass(veMap); static AlphaNAirmass alphaNAirmass(veMap); AirmassModelBase* getAirmassModel(DECLARE_ENGINE_PARAMETER_SIGNATURE) { switch (CONFIG(fuelAlgorithm)) { case LM_SPEED_DENSITY: return &sdAirmass; case LM_REAL_MAF: return &mafAirmass; case LM_ALPHA_N: return &alphaNAirmass; #if EFI_UNIT_TEST case LM_MOCK: return engine->mockAirmassModel; #endif default: // this is a bad work-around for https://github.com/rusefi/rusefi/issues/1690 issue warning(CUSTOM_ERR_ASSERT, "Invalid airmass mode %d", CONFIG(fuelAlgorithm)); return &sdAirmass; /* todo: this should be the implementation return nullptr; */ } } // Per-cylinder base fuel mass static float getBaseFuelMass(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetBaseFuel); // airmass modes - get airmass first, then convert to fuel auto model = getAirmassModel(PASS_ENGINE_PARAMETER_SIGNATURE); efiAssert(CUSTOM_ERR_ASSERT, model != nullptr, "Invalid airmass mode", 0.0f); auto airmass = model->getAirmass(rpm); // Plop some state for others to read ENGINE(engineState.sd.airMassInOneCylinder) = airmass.CylinderAirmass; ENGINE(engineState.fuelingLoad) = airmass.EngineLoadPercent; ENGINE(engineState.ignitionLoad) = getLoadOverride(airmass.EngineLoadPercent, CONFIG(ignOverrideMode) PASS_ENGINE_PARAMETER_SUFFIX); float baseFuelMass = ENGINE(fuelComputer)->getCycleFuel(airmass.CylinderAirmass, rpm, airmass.EngineLoadPercent); // Fudge it by the global correction factor baseFuelMass *= CONFIG(globalFuelCorrection); engine->engineState.baseFuel = baseFuelMass; if (cisnan(baseFuelMass)) { // todo: we should not have this here but https://github.com/rusefi/rusefi/issues/1690 return 0; } return baseFuelMass; } angle_t getInjectionOffset(float rpm, float load DECLARE_ENGINE_PARAMETER_SUFFIX) { if (cisnan(rpm)) { return 0; // error already reported } if (cisnan(load)) { return 0; // error already reported } angle_t value = fuelPhaseMap.getValue(rpm, load); if (cisnan(value)) { // we could be here while resetting configuration for example warning(CUSTOM_ERR_6569, "phase map not ready"); return 0; } angle_t result = value + CONFIG(extraInjectionOffset); fixAngle(result, "inj offset#2", CUSTOM_ERR_6553); return result; } /** * Number of injections using each injector per engine cycle * @see getNumberOfSparks */ int getNumberOfInjections(injection_mode_e mode DECLARE_ENGINE_PARAMETER_SUFFIX) { switch (mode) { case IM_SIMULTANEOUS: case IM_SINGLE_POINT: return engineConfiguration->specs.cylindersCount; case IM_BATCH: return 2; case IM_SEQUENTIAL: return 1; default: firmwareError(CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode); return 1; } } float getInjectionModeDurationMultiplier(DECLARE_ENGINE_PARAMETER_SIGNATURE) { injection_mode_e mode = ENGINE(getCurrentInjectionMode(PASS_ENGINE_PARAMETER_SIGNATURE)); switch (mode) { case IM_SIMULTANEOUS: { auto cylCount = engineConfiguration->specs.cylindersCount; if (cylCount == 0) { // we can end up here during configuration reset return 0; } return 1.0f / cylCount; } case IM_SEQUENTIAL: case IM_SINGLE_POINT: return 1; case IM_BATCH: return 0.5f; default: firmwareError(CUSTOM_ERR_INVALID_INJECTION_MODE, "Unexpected injection_mode_e %d", mode); return 0; } } /** * This is more like MOSFET duty cycle since durations include injector lag * @see getCoilDutyCycle */ percent_t getInjectorDutyCycle(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { floatms_t totalInjectiorAmountPerCycle = ENGINE(injectionDuration) * getNumberOfInjections(engineConfiguration->injectionMode PASS_ENGINE_PARAMETER_SUFFIX); floatms_t engineCycleDuration = getEngineCycleDuration(rpm PASS_ENGINE_PARAMETER_SUFFIX); return 100 * totalInjectiorAmountPerCycle / engineCycleDuration; } static float getCycleFuelMass(bool isCranking, float baseFuelMass DECLARE_ENGINE_PARAMETER_SUFFIX) { if (isCranking) { return getCrankingFuel(baseFuelMass PASS_ENGINE_PARAMETER_SUFFIX); } else { return getRunningFuel(baseFuelMass PASS_ENGINE_PARAMETER_SUFFIX); } } /** * @returns Length of each individual fuel injection, in milliseconds * in case of single point injection mode the amount of fuel into all cylinders, otherwise the amount for one cylinder */ floatms_t getInjectionMass(int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { ScopePerf perf(PE::GetInjectionDuration); #if EFI_SHAFT_POSITION_INPUT // Always update base fuel - some cranking modes use it float baseFuelMass = getBaseFuelMass(rpm PASS_ENGINE_PARAMETER_SUFFIX); bool isCranking = ENGINE(rpmCalculator).isCranking(); float cycleFuelMass = getCycleFuelMass(isCranking, baseFuelMass PASS_ENGINE_PARAMETER_SUFFIX); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(cycleFuelMass), "NaN cycleFuelMass", 0); // Fuel cut-off isn't just 0 or 1, it can be tapered cycleFuelMass *= ENGINE(engineState.fuelCutoffCorrection); float durationMultiplier = getInjectionModeDurationMultiplier(PASS_ENGINE_PARAMETER_SIGNATURE); float injectionFuelMass = cycleFuelMass * durationMultiplier; // Prepare injector flow rate & deadtime ENGINE(injectorModel)->prepare(); floatms_t tpsAccelEnrich = ENGINE(tpsAccelEnrichment.getTpsEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE)); efiAssert(CUSTOM_ERR_ASSERT, !cisnan(tpsAccelEnrich), "NaN tpsAccelEnrich", 0); ENGINE(engineState.tpsAccelEnrich) = tpsAccelEnrich; // For legacy reasons, the TPS accel table is in units of milliseconds, so we have to convert BACK to mass float tpsAccelPerInjection = durationMultiplier * tpsAccelEnrich; float tpsFuelMass = ENGINE(injectorModel)->getFuelMassForDuration(tpsAccelPerInjection); return injectionFuelMass + tpsFuelMass; #else return 0; #endif } static FuelComputer fuelComputer(lambdaMap); static InjectorModel injectorModel; /** * @brief Initialize fuel map data structure * @note this method has nothing to do with fuel map VALUES - it's job * is to prepare the fuel map data structure for 3d interpolation */ void initFuelMap(DECLARE_ENGINE_PARAMETER_SIGNATURE) { INJECT_ENGINE_REFERENCE(&sdAirmass); INJECT_ENGINE_REFERENCE(&mafAirmass); INJECT_ENGINE_REFERENCE(&alphaNAirmass); INJECT_ENGINE_REFERENCE(&fuelComputer); INJECT_ENGINE_REFERENCE(&injectorModel); ENGINE(fuelComputer) = &fuelComputer; ENGINE(injectorModel) = &injectorModel; mapEstimationTable.init(config->mapEstimateTable, config->mapEstimateTpsBins, config->mapEstimateRpmBins); #if (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) fuelPhaseMap.init(config->injectionPhase, config->injPhaseLoadBins, config->injPhaseRpmBins); #endif /* (IGN_LOAD_COUNT == FUEL_LOAD_COUNT) && (IGN_RPM_COUNT == FUEL_RPM_COUNT) */ } /** * @brief Engine warm-up fuel correction. */ float getCltFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, clt] = Sensor::get(SensorType::Clt); if (!valid) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d(clt, config->cltFuelCorrBins, config->cltFuelCorr); } angle_t getCltTimingCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, clt] = Sensor::get(SensorType::Clt); if (!valid) return 0; // this error should be already reported somewhere else, let's just handle it return interpolate2d(clt, engineConfiguration->cltTimingBins, engineConfiguration->cltTimingExtra); } float getIatFuelCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { const auto [valid, iat] = Sensor::get(SensorType::Iat); if (!valid) return 1; // this error should be already reported somewhere else, let's just handle it return interpolate2d(iat, config->iatFuelCorrBins, config->iatFuelCorr); } /** * @brief Called from EngineState::periodicFastCallback to update the state. * @note The returned value is float, not boolean - to implement taper (smoothed correction). * @return Fuel duration correction for fuel cut-off control (ex. if coasting). No correction if 1.0 */ float getFuelCutOffCorrection(efitick_t nowNt, int rpm DECLARE_ENGINE_PARAMETER_SUFFIX) { // no corrections by default float fuelCorr = 1.0f; // coasting fuel cut-off correction if (CONFIG(coastingFuelCutEnabled)) { auto [tpsValid, tpsPos] = Sensor::get(SensorType::Tps1); if (!tpsValid) { return 1.0f; } const auto [cltValid, clt] = Sensor::get(SensorType::Clt); if (!cltValid) { return 1.0f; } const auto [mapValid, map] = Sensor::get(SensorType::Map); if (!mapValid) { return 1.0f; } // gather events bool mapDeactivate = (map >= CONFIG(coastingFuelCutMap)); bool tpsDeactivate = (tpsPos >= CONFIG(coastingFuelCutTps)); // If no CLT sensor (or broken), don't allow DFCO bool cltDeactivate = clt < (float)CONFIG(coastingFuelCutClt); bool rpmDeactivate = (rpm < CONFIG(coastingFuelCutRpmLow)); bool rpmActivate = (rpm > CONFIG(coastingFuelCutRpmHigh)); // state machine (coastingFuelCutStartTime is also used as a flag) if (!mapDeactivate && !tpsDeactivate && !cltDeactivate && rpmActivate) { ENGINE(engineState.coastingFuelCutStartTime) = nowNt; } else if (mapDeactivate || tpsDeactivate || rpmDeactivate || cltDeactivate) { ENGINE(engineState.coastingFuelCutStartTime) = 0; } // enable fuelcut? if (ENGINE(engineState.coastingFuelCutStartTime) != 0) { // todo: add taper - interpolate using (nowNt - coastingFuelCutStartTime)? fuelCorr = 0.0f; } } // todo: add other fuel cut-off checks here (possibly cutFuelOnHardLimit?) return fuelCorr; } float getBaroCorrection(DECLARE_ENGINE_PARAMETER_SIGNATURE) { if (Sensor::hasSensor(SensorType::BarometricPressure)) { // Default to 1atm if failed float pressure = Sensor::get(SensorType::BarometricPressure).value_or(101.325f); float correction = baroCorrMap.getValue(GET_RPM(), pressure); if (cisnan(correction) || correction < 0.01) { warning(OBD_Barometric_Press_Circ_Range_Perf, "Invalid baro correction %f", correction); return 1; } return correction; } else { return 1; } } #if EFI_ENGINE_CONTROL /** * @return Duration of fuel injection while craning */ float getCrankingFuel(float baseFuel DECLARE_ENGINE_PARAMETER_SUFFIX) { return getCrankingFuel3(baseFuel, engine->rpmCalculator.getRevolutionCounterSinceStart() PASS_ENGINE_PARAMETER_SUFFIX); } float getStandardAirCharge(DECLARE_ENGINE_PARAMETER_SIGNATURE) { float totalDisplacement = CONFIG(specs.displacement); float cylDisplacement = totalDisplacement / CONFIG(specs.cylindersCount); // Calculation of 100% VE air mass in g/cyl - 1 cylinder filling at 1.204/L // 101.325kpa, 20C return idealGasLaw(cylDisplacement, 101.325f, 273.15f + 20.0f); } #endif float getFuelRate(floatms_t totalInjDuration, efitick_t timePeriod DECLARE_ENGINE_PARAMETER_SUFFIX) { if (timePeriod <= 0.0f) return 0.0f; float timePeriodMs = (float)NT2US(timePeriod) / 1000.0f; float fuelRate = totalInjDuration / timePeriodMs; const float cc_min_to_L_h = 60.0f / 1000.0f; return fuelRate * CONFIG(injector.flow) * cc_min_to_L_h; } #endif