/** * @file HIP9011.cpp * @brief HIP9011/TPIC8101 driver * * pin1 VDD * pin2 GND * * pin8 Chip Select - CS * pin11 Slave Data Out - MISO- * pin12 Slave Data In - MOSI * pin13 SPI clock - SCLK * * http://www.ti.com/lit/ds/symlink/tpic8101.pdf * http://www.intersil.com/content/dam/Intersil/documents/hip9/hip9011.pdf * http://www.intersil.com/content/dam/Intersil/documents/an97/an9770.pdf * http://e2e.ti.com/cfs-file/__key/telligent-evolution-components-attachments/00-26-01-00-00-42-36-40/TPIC8101-Training.pdf * * SPI frequency: 5MHz max * * @date Nov 27, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 */ #include "main.h" #include "engine.h" #include "settings.h" #include "pin_repository.h" #include "hardware.h" #include "rpm_calculator.h" #include "trigger_central.h" #if EFI_HIP_9011 || defined(__DOXYGEN__) #define HIP_DEBUG FALSE extern pin_output_mode_e DEFAULT_OUTPUT; static int bandIndex; static int gainIndex; static int intergratorIndex = -1; static bool_t isHip9011Busy = false; static scheduling_s startTimer[2]; static scheduling_s endTimer[2]; // 0b01000000 #define SET_PRESCALER_CMD 0x40 // 0b11100000 #define SET_CHANNEL_CMD 0xE0 // 0b00000000 #define SET_BAND_PASS_CMD 0x0 // 0b10000000 #define SET_GAIN_CMD 0x80 // 0b01110001 #define SET_ADVANCED_MODE 0x71 static Logging logger; #if HIP_DEBUG static THD_WORKING_AREA(htThreadStack, UTILITY_THREAD_STACK_SIZE); #endif // SPI_CR1_BR_1 // 5MHz // SPI_CR1_CPHA Clock Phase // todo: nicer method which would mention SPI speed explicitly? static SPIConfig spicfg = { NULL, /* HW dependent part.*/ NULL, 0, SPI_CR1_MSTR | //SPI_CR1_BR_1 // 5MHz SPI_CR1_CPHA | SPI_CR1_BR_0 | SPI_CR1_BR_1 | SPI_CR1_BR_2 }; static unsigned char tx_buff[1]; static unsigned char rx_buff[1]; #define SPI_SYNCHRONOUS(value) \ spiSelect(driver); \ tx_buff[0] = value; \ spiExchange(driver, 1, tx_buff, rx_buff); \ spiUnselect(driver); // todo: make this configurable static SPIDriver *driver = &SPID2; static msg_t ivThread(int param) { chRegSetThreadName("HIP"); while (true) { chThdSleepMilliseconds(10); // scheduleMsg(&logger, "poking HIP=%d", counter++); spiSelect(driver); // // '0' for 4MHz // tx_buff[0] = SET_PRESCALER_CMD + 0 + 2; // spiExchange(driver, 1, tx_buff, rx_buff); // // // '0' for channel #1 // tx_buff[0] = SET_CHANNEL_CMD + 0; // spiExchange(driver, 1, tx_buff, rx_buff); // // // band index depends on cylinder bore // tx_buff[0] = SET_BAND_PASS_CMD + bandIndex; // spiExchange(driver, 1, tx_buff, rx_buff); // // // todo // tx_buff[0] = SET_GAIN_CMD + 41; // spiExchange(driver, 1, tx_buff, rx_buff); // // tx_buff[0] = SET_ADVANCED_MODE; // spiExchange(driver, 1, tx_buff, rx_buff); // BAND_PASS_CMD tx_buff[0] = 0x0 | (40 & 0x3F); spiExchange(driver, 1, tx_buff, rx_buff); // Set the gain 0b10000000 tx_buff[0] = 0x80 | (49 & 0x3F); spiExchange(driver, 1, tx_buff, rx_buff); // Set the integration time constant 0b11000000 tx_buff[0] = 0xC0 | (31 & 0x1F); spiExchange(driver, 1, tx_buff, rx_buff); // SET_ADVANCED_MODE 0b01110001 tx_buff[0] = 0x71; spiExchange(driver, 1, tx_buff, rx_buff); spiUnselect(driver); } #if defined __GNUC__ return 0; #endif } EXTERN_ENGINE ; #define INT_LOOKUP_SIZE 32 /** * These are HIP9011 magic values - integrator time constants in uS */ static const int integratorValues[INT_LOOKUP_SIZE] = { 40, 45, 50, 55, 60, 65, 70, 75, 80, 90, 100, 110, 120, 130, 140, 150, 160, 180, 200, 220, 240, 260, 280, 300, 320, 360, 400, 440, 480, 520, 560, 600 }; #define GAIN_LOOKUP_SIZE 64 static const float gainLookupInReverseOrder[GAIN_LOOKUP_SIZE] = { /* 00 */ 0.111, 0.118, 0.125, 0.129, 0.133, 0.138, 0.143, 0.148, /* 08 */ 0.154, 0.160, 0.167, 0.174, 0.182, 0.190, 0.200, 0.211, /* 16 */ 0.222, 0.236, 0.250, 0.258, 0.267, 0.276, 0.286, 0.296, /* 24 */ 0.308, 0.320, 0.333, 0.348, 0.364, 0.381, 0.400, 0.421, /* 32 */ 0.444, 0.471, 0.500, 0.548, 0.567, 0.586, 0.607, 0.630, /* 40 */ 0.654, 0.680, 0.708, 0.739, 0.773, 0.810, 0.850, 0.895, /* 48 */ 0.944, 1.000, 1.063, 1.143, 1.185, 1.231, 1.280, 1.333, /* 56 */ 1.391, 1.455, 1.523, 1.600, 1.684, 1.778, 1.882, 2.0 }; #define GAIN_INDEX(gain) (GAIN_LOOKUP_SIZE - 1 - findIndex(gainLookupInReverseOrder, GAIN_LOOKUP_SIZE, (gain))) #define BAND_LOOKUP_SIZE 64 static const float bandFreqLookup[BAND_LOOKUP_SIZE] = { 1.22, 1.26, 1.31, 1.35, 1.4, 1.45, 1.51, 1.57, 1.63, 1.71, 1.78, 1.87, 1.96, 2.07, 2.18, 2.31, 2.46, 2.54, 2.62, 2.71, 2.81, 2.92, 3.03, 3.15, 3.28, 3.43, 3.59, 3.76, 3.95, 4.16, 4.39, 4.66, 4.95, 5.12, 5.29, 5.48, 5.68, 5.9, 6.12, 6.37, 6.64, 6.94, 7.27, 7.63, 8.02, 8.46, 8.95, 9.5, 10.12, 10.46, 10.83, 11.22, 11.65, 12.1, 12.6, 13.14, 13.72, 14.36, 15.07, 15.84, 16.71, 17.67, 18.76, 19.98 }; #define PIF 3.14159f static float rpmLookup[INT_LOOKUP_SIZE]; /** * 'TC is typically TINT/(2*Pi*VOUT)' * Knock Sensor Training TPIC8101, page 24 * * We know the set of possible integration times, we know the knock detection window width * * 2.2 volts should * */ #define DESIRED_OUTPUT_VALUE 5.0f static void prepareRpmLookup(engine_configuration_s *engineConfiguration) { for (int i = 0; i < INT_LOOKUP_SIZE; i++) { float windowWidthMult = (engineConfiguration->knockDetectionWindowEnd - engineConfiguration->knockDetectionWindowStart) / 360.0f; // '60000000' because revolutions per MINUTE in uS conversion rpmLookup[i] = 60000000.0f / (integratorValues[i] * 2 * PIF * DESIRED_OUTPUT_VALUE * windowWidthMult); } } #define BAND(bore) (900 / (PIF * (bore) / 2)) #define INTEGRATOR_INDEX findIndex(rpmLookup, INT_LOOKUP_SIZE, engine->rpmCalculator.rpmValue) static void showHipInfo(void) { printSpiState(&logger, boardConfiguration); scheduleMsg(&logger, "bore=%f freq=%f", engineConfiguration->cylinderBore, BAND(engineConfiguration->cylinderBore)); scheduleMsg(&logger, "band_index=%d gain_index=%d", bandIndex, GAIN_INDEX(boardConfiguration->hip9011Gain)); scheduleMsg(&logger, "integrator index=%d", INTEGRATOR_INDEX); scheduleMsg(&logger, "spi= int=%s CS=%s", hwPortname(boardConfiguration->hip9011IntHoldPin), hwPortname(boardConfiguration->hip9011CsPin)); } void setHip9011FrankensoPinout(void) { /** * SPI on PB13/14/15 */ boardConfiguration->isHip9011Enabled = true; boardConfiguration->hip9011CsPin = GPIOD_11; boardConfiguration->hip9011IntHoldPin = GPIOB_11; boardConfiguration->is_enabled_spi_2 = true; } static void startIntegration(void) { if(isHip9011Busy) return; turnPinHigh(HIP9011_INT_HOLD); } static void endIntegration(void) { turnPinLow(HIP9011_INT_HOLD); /** * SPI communication is only allowed while not integrading, so we initiate the exchange * once we are done inregratng */ isHip9011Busy = true; int newValue = INTEGRATOR_INDEX; if (newValue != intergratorIndex) { intergratorIndex = newValue; // todo: send new value, be sure to use non-synchnonious approach! } // todo: move this into the end callback isHip9011Busy = false; } /** * Shaft Position callback used to start or finish HIP integration */ static void intHoldCallback(trigger_event_e ckpEventType, uint32_t index DECLARE_ENGINE_PARAMETER_S) { // this callback is invoked on interrupt thread if (index != 0) return; int rpm = engine->rpmCalculator.rpmValue; if (!isValidRpm(rpm)) return; int structIndex = getRevolutionCounter() % 2; // todo: schedule this based on closest trigger event, same as ignition works scheduleByAngle(rpm, &startTimer[structIndex], engineConfiguration->knockDetectionWindowStart, (schfunc_t) &startIntegration, NULL); scheduleByAngle(rpm, &endTimer[structIndex], engineConfiguration->knockDetectionWindowEnd, (schfunc_t) &endIntegration, NULL); } static void setGain(float value) { boardConfiguration->hip9011Gain = value; showHipInfo(); } void initHip9011(void) { if (!boardConfiguration->isHip9011Enabled) return; initLogging(&logger, "HIP driver"); // driver = getSpiDevice(boardConfiguration->digitalPotentiometerSpiDevice); spicfg.ssport = getHwPort(boardConfiguration->hip9011CsPin); spicfg.sspad = getHwPin(boardConfiguration->hip9011CsPin); outputPinRegisterExt2("hip int/hold", HIP9011_INT_HOLD, boardConfiguration->hip9011IntHoldPin, &DEFAULT_OUTPUT); outputPinRegisterExt2("hip CS", SPI_CS_HIP9011, boardConfiguration->hip9011CsPin, &DEFAULT_OUTPUT); scheduleMsg(&logger, "Starting HIP9011/TPIC8101 driver"); spiStart(driver, &spicfg); /** * Here we initialize the chip in synchronous mode */ #if HIP_DEBUG chThdCreateStatic(htThreadStack, sizeof(htThreadStack), NORMALPRIO, (tfunc_t) ivThread, NULL); #else /** * for runtime we are re-starting SPI in non-synchronous mode */ spiStop(driver); // todo spicfg.end_cb = spiEndCallback; spiStart(driver, &spicfg); #endif bandIndex = findIndex(bandFreqLookup, BAND_LOOKUP_SIZE, BAND(engineConfiguration->cylinderBore)); addTriggerEventListener(&intHoldCallback, "DD int/hold", engine); // MISO PB14 // palSetPadMode(GPIOB, 14, PAL_MODE_ALTERNATE(EFI_SPI2_AF) | PAL_STM32_PUDR_PULLUP); // MOSI PB15 // palSetPadMode(GPIOB, 15, PAL_MODE_ALTERNATE(EFI_SPI2_AF) | PAL_STM32_OTYPE_OPENDRAIN); addConsoleAction("hipinfo", showHipInfo); addConsoleActionF("set_gain", setGain); } #endif