/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2018 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "global.h" #if EFI_SHAFT_POSITION_INPUT || defined(__DOXYGEN__) #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "trigger_mazda.h" #include "trigger_chrysler.h" #include "trigger_gm.h" #include "trigger_bmw.h" #include "trigger_mitsubishi.h" #include "trigger_subaru.h" #include "trigger_nissan.h" #include "trigger_toyota.h" #include "trigger_rover.h" #include "trigger_honda.h" #include "trigger_vw.h" #include "trigger_structure.h" #include "efiGpio.h" #include "engine.h" #include "engine_math.h" #include "trigger_central.h" #include "trigger_simulator.h" #include "trigger_universal.h" #include "trigger_misc.h" #include "rfiutil.h" #if EFI_SENSOR_CHART || defined(__DOXYGEN__) #include "sensor_chart.h" #endif EXTERN_ENGINE ; static cyclic_buffer errorDetection; static bool isInitializingTrigger = false; // #286 miata NA config - sync error on startup #if ! EFI_PROD_CODE || defined(__DOXYGEN__) bool printTriggerDebug = false; float actualSynchGap; #endif /* ! EFI_PROD_CODE */ #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) extern TunerStudioOutputChannels tsOutputChannels; #endif /* EFI_TUNER_STUDIO */ static Logging * logger; efitick_t lastDecodingErrorTime = US2NT(-10000000LL); // the boolean flag is a performance optimization so that complex comparison is avoided if no error static bool someSortOfTriggerError = false; /** * @return TRUE is something is wrong with trigger decoding */ bool isTriggerDecoderError(void) { return errorDetection.sum(6) > 4; } bool TriggerState::isValidIndex(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return currentCycle.current_index < getTriggerSize(); } static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; static trigger_value_e eventType[6] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE, TV_FALL, TV_RISE }; #define getCurrentGapDuration(nowNt) \ (isFirstEvent ? 0 : (nowNt) - toothed_previous_time) #if EFI_UNIT_TEST || defined(__DOXYGEN__) #define PRINT_INC_INDEX if (printTriggerDebug) {\ printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \ } #else #define PRINT_INC_INDEX {} #endif /* EFI_UNIT_TEST */ #define nextTriggerEvent() \ { \ uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \ if (prevTime != 0) { \ /* even event - apply the value*/ \ currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \ currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \ } else { \ /* odd event - start accumulation */ \ currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \ } \ if (engineConfiguration->useOnlyRisingEdgeForTrigger) {currentCycle.current_index++;} \ currentCycle.current_index++; \ PRINT_INC_INDEX; \ } #define considerEventForGap() (!TRIGGER_SHAPE(useOnlyPrimaryForSync) || isPrimary) #define needToSkipFall(type) ((!TRIGGER_SHAPE(gapBothDirections)) && (( TRIGGER_SHAPE(useRiseEdge)) && (type != TV_RISE))) #define needToSkipRise(type) ((!TRIGGER_SHAPE(gapBothDirections)) && ((!TRIGGER_SHAPE(useRiseEdge)) && (type != TV_FALL))) #define isLessImportant(type) (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap()) ) TriggerState::TriggerState() { reset(); } void TriggerState::reset() { triggerCycleCallback = NULL; shaft_is_synchronized = false; toothed_previous_time = 0; memset(toothDurations, 0, sizeof(toothDurations)); totalRevolutionCounter = 0; totalTriggerErrorCounter = 0; orderingErrorCounter = 0; memset(toothDurations, 0, sizeof(toothDurations)); curSignal = SHAFT_PRIMARY_FALLING; prevSignal = SHAFT_PRIMARY_FALLING; startOfCycleNt = 0; resetRunningCounters(); resetCurrentCycleState(); memset(expectedTotalTime, 0, sizeof(expectedTotalTime)); totalEventCountBase = 0; isFirstEvent = true; } int TriggerState::getCurrentIndex() { return currentCycle.current_index; } void TriggerState::incrementTotalEventCounter() { totalRevolutionCounter++; } bool TriggerState::isEvenRevolution() { return totalRevolutionCounter & 1; } void TriggerState::resetCurrentCycleState() { memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount)); memset(currentCycle.timeOfPreviousEventNt, 0, sizeof(currentCycle.timeOfPreviousEventNt)); memset(currentCycle.totalTimeNt, 0, sizeof(currentCycle.totalTimeNt)); currentCycle.current_index = 0; } void TriggerState::onSynchronizationLost(DECLARE_ENGINE_PARAMETER_SIGNATURE) { shaft_is_synchronized = false; // Needed for early instant-RPM detection engine->rpmCalculator.setStopSpinning(PASS_ENGINE_PARAMETER_SIGNATURE); } /** * @brief Trigger decoding happens here * This method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ void TriggerState::decodeTriggerEvent(trigger_event_e const signal, efitime_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { bool useOnlyRisingEdgeForTrigger = CONFIG(useOnlyRisingEdgeForTrigger); // todo: use 'triggerShape' instead of TRIGGER_SHAPE in order to decouple this method from engine #635 TriggerShape *triggerShape = &ENGINE(triggerCentral.triggerShape); efiAssertVoid(CUSTOM_ERR_6640, signal <= SHAFT_3RD_RISING, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; trigger_value_e type = eventType[signal]; if (!useOnlyRisingEdgeForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; currentCycle.eventCount[triggerWheel]++; efitime_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ toothDurations[0] = currentDurationLong > 10 * US2NT(US_PER_SECOND_LL) ? 10 * US2NT(US_PER_SECOND_LL) : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (isLessImportant(type)) { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isLessImportant %s now=%lld index=%d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt, currentCycle.current_index); } #endif /* EFI_UNIT_TEST */ /** * For less important events we simply increment the index. */ nextTriggerEvent() ; } else { #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s event %s %d\r\n", getTrigger_type_e(engineConfiguration->trigger.type), getTrigger_event_e(signal), nowNt); } #endif /* EFI_UNIT_TEST */ isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE || defined(__DOXYGEN__) // scheduleMsg(&logger, "from %.2f to %.2f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, toothDurations[0], shaftPositionState->toothDurations[1]); // scheduleMsg(&logger, "ratio %.2f", 1.0 * toothDurations[0]/ shaftPositionState->toothDurations[1]); #else if (printTriggerDebug) { printf("ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1], toothDurations[0], toothDurations[1]); } #endif bool isSynchronizationPoint; if (triggerShape->isSynchronizationNeeded) { // this is getting a little out of hand, any ideas? if (CONFIG(debugMode) == DBG_TRIGGER_SYNC) { float currentGap = 1.0 * toothDurations[0] / toothDurations[1]; #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) tsOutputChannels.debugFloatField1 = currentGap; tsOutputChannels.debugFloatField2 = currentCycle.current_index; #endif /* EFI_TUNER_STUDIO */ } bool isGapCondition[GAP_TRACKING_LENGTH]; for (int i = 0;isyncronizationRatioFrom[i]) || (toothDurations[i] > toothDurations[i + 1] * TRIGGER_SHAPE(syncronizationRatioFrom[i]) && toothDurations[i] < toothDurations[i + 1] * triggerShape->syncronizationRatioTo[i]); } bool isSync = isGapCondition[0]; for (int index = 1; index < GAP_TRACKING_LENGTH ; index++) { isSync = isSync && isGapCondition[index]; } isSynchronizationPoint = isSync; #if EFI_PROD_CODE || defined(__DOXYGEN__) if (CONFIG(isPrintTriggerSynchDetails) || (someSortOfTriggerError && !CONFIG(silentTriggerError))) { #else if (printTriggerDebug) { #endif /* EFI_PROD_CODE */ #if EFI_PROD_CODE || defined(__DOXYGEN__) for (int i = 0;i= endOfCycleIndex); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("isSynchronizationPoint=%d index=%d size=%d\r\n", isSynchronizationPoint, currentCycle.current_index, getTriggerSize()); } #endif /* EFI_UNIT_TEST */ } #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("%s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(engineConfiguration->trigger.type), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif /* EFI_UNIT_TEST */ if (isSynchronizationPoint) { /** * We can check if things are fine by comparing the number of events in a cycle with the expected number of event. */ bool isDecodingError = currentCycle.eventCount[0] != TRIGGER_SHAPE(expectedEventCount[0]) || currentCycle.eventCount[1] != TRIGGER_SHAPE(expectedEventCount[1]) || currentCycle.eventCount[2] != TRIGGER_SHAPE(expectedEventCount[2]); #if EFI_UNIT_TEST printf("sync point: isDecodingError=%d isInit=%d\r\n", isDecodingError, isInitializingTrigger); if (isDecodingError) { printf("count: cur=%d exp=%d\r\n", currentCycle.eventCount[0], TRIGGER_SHAPE(expectedEventCount[0])); printf("count: cur=%d exp=%d\r\n", currentCycle.eventCount[1], TRIGGER_SHAPE(expectedEventCount[1])); printf("count: cur=%d exp=%d\r\n", currentCycle.eventCount[2], TRIGGER_SHAPE(expectedEventCount[2])); } #endif enginePins.triggerDecoderErrorPin.setValue(isDecodingError); if (isDecodingError && !isInitializingTrigger) { if (engineConfiguration->debugMode == DBG_TRIGGER_SYNC) { #if EFI_TUNER_STUDIO || defined(__DOXYGEN__) tsOutputChannels.debugIntField1 = currentCycle.eventCount[0]; tsOutputChannels.debugIntField2 = currentCycle.eventCount[1]; tsOutputChannels.debugIntField3 = currentCycle.eventCount[2]; #endif /* EFI_TUNER_STUDIO */ } warning(CUSTOM_SYNC_COUNT_MISMATCH, "trigger not happy current %d/%d/%d expected %d/%d/%d", currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2], TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2])); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; totalTriggerErrorCounter++; if (CONFIG(isPrintTriggerSynchDetails) || someSortOfTriggerError) { #if EFI_PROD_CODE || defined(__DOXYGEN__) scheduleMsg(logger, "error: synchronizationPoint @ index %d expected %d/%d/%d got %d/%d/%d", currentCycle.current_index, TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); #endif /* EFI_PROD_CODE */ } } errorDetection.add(isDecodingError); if (isTriggerDecoderError()) { warning(CUSTOM_OBD_TRG_DECODING, "trigger decoding issue. expected %d/%d/%d got %d/%d/%d", TRIGGER_SHAPE(expectedEventCount[0]), TRIGGER_SHAPE(expectedEventCount[1]), TRIGGER_SHAPE(expectedEventCount[2]), currentCycle.eventCount[0], currentCycle.eventCount[1], currentCycle.eventCount[2]); } shaft_is_synchronized = true; // this call would update duty cycle values nextTriggerEvent() ; if (triggerCycleCallback != NULL) { triggerCycleCallback(this); } startOfCycleNt = nowNt; resetCurrentCycleState(); incrementTotalEventCounter(); runningRevolutionCounter++; totalEventCountBase += getTriggerSize(); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("index=%d %d\r\n", currentCycle.current_index, runningRevolutionCounter); } #endif /* EFI_UNIT_TEST */ } else { /* if (!isSynchronizationPoint) */ nextTriggerEvent() ; } for (int i = GAP_TRACKING_LENGTH; i > 0; i--) { toothDurations[i] = toothDurations[i - 1]; } toothed_previous_time = nowNt; } if (!isValidIndex(PASS_ENGINE_PARAMETER_SIGNATURE) && !isInitializingTrigger) { // let's not show a warning if we are just starting to spin if (GET_RPM() != 0) { warning(CUSTOM_SYNC_ERROR, "sync error: index #%d above total size %d", currentCycle.current_index, getTriggerSize()); lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; } } if (someSortOfTriggerError) { if (getTimeNowNt() - lastDecodingErrorTime > US2NT(US_PER_SECOND_LL)) { someSortOfTriggerError = false; } } runtimeStatistics(nowNt PASS_ENGINE_PARAMETER_SUFFIX); // Needed for early instant-RPM detection if (!isInitializingTrigger) { engine->rpmCalculator.setSpinningUp(nowNt PASS_ENGINE_PARAMETER_SUFFIX); } } /** * External logger is needed because at this point our logger is not yet initialized */ void TriggerShape::initializeTriggerShape(Logging *logger, bool useOnlyRisingEdgeForTrigger DECLARE_ENGINE_PARAMETER_SUFFIX) { const trigger_config_s *triggerConfig = &engineConfiguration->trigger; #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssertVoid(CUSTOM_ERR_6641, getRemainingStack(chThdGetSelfX()) > 256, "init t"); scheduleMsg(logger, "initializeTriggerShape(%s/%d)", getTrigger_type_e(triggerConfig->type), (int) triggerConfig->type); #endif shapeDefinitionError = false; this->useOnlyRisingEdgeForTriggerTemp = useOnlyRisingEdgeForTrigger; switch (triggerConfig->type) { case TT_TOOTHED_WHEEL: initializeSkippedToothTriggerShapeExt(this, triggerConfig->customTotalToothCount, triggerConfig->customSkippedToothCount, engineConfiguration->operationMode); break; case TT_MAZDA_MIATA_NA: initializeMazdaMiataNaShape(this, useOnlyRisingEdgeForTrigger); break; case TT_MAZDA_MIATA_NB1: initializeMazdaMiataNb1Shape(this); break; case TT_MAZDA_MIATA_VVT_TEST: initializeMazdaMiataVVtTestShape(this); break; case TT_MAZDA_Z5: initialize_Mazda_Engine_z5_Shape(this); break; case TT_MIATA_VVT: initializeMazdaMiataNb2Crank(this); break; case TT_DODGE_NEON_1995: configureNeon1995TriggerShape(this); break; case TT_DODGE_NEON_1995_ONLY_CRANK: configureNeon1995TriggerShapeOnlyCrank(this); break; case TT_DODGE_STRATUS: configureDodgeStratusTriggerShape(this); break; case TT_DODGE_NEON_2003_CAM: configureNeon2003TriggerShapeCam(this); break; case TT_DODGE_NEON_2003_CRANK: configureNeon2003TriggerShapeCam(this); // configureNeon2003TriggerShapeCrank(triggerShape); break; case TT_FORD_ASPIRE: configureFordAspireTriggerShape(this); break; case TT_GM_7X: configureGmTriggerShape(this); break; case TT_MAZDA_DOHC_1_4: configureMazdaProtegeLx(this); break; case TT_ONE_PLUS_ONE: configureOnePlusOne(this, engineConfiguration->operationMode); break; case TT_3_1_CAM: configure3_1_cam(this, engineConfiguration->operationMode); break; case TT_ONE_PLUS_TOOTHED_WHEEL_60_2: configureOnePlus60_2(this, engineConfiguration->operationMode); break; case TT_ONE: setToothedWheelConfiguration(this, 1, 0, engineConfiguration->operationMode); break; case TT_MAZDA_SOHC_4: configureMazdaProtegeSOHC(this); break; case TT_MINI_COOPER_R50: configureMiniCooperTriggerShape(this); break; case TT_TOOTHED_WHEEL_60_2: setToothedWheelConfiguration(this, 60, 2, engineConfiguration->operationMode); break; case TT_60_2_VW: setVwConfiguration(this); break; case TT_TOOTHED_WHEEL_36_1: setToothedWheelConfiguration(this, 36, 1, engineConfiguration->operationMode); break; case TT_HONDA_4_24_1: configureHonda_1_4_24(this, true, true, T_CHANNEL_3, T_PRIMARY, 0); break; case TT_HONDA_4_24: configureHonda_1_4_24(this, false, true, T_NONE, T_PRIMARY, 0); break; case TT_HONDA_1_24: configureHonda_1_4_24(this, true, false, T_PRIMARY, T_NONE, 10); break; case TT_HONDA_ACCORD_1_24_SHIFTED: configureHondaAccordShifted(this); break; case TT_HONDA_1_4_24: configureHondaAccordCDDip(this); break; case TT_HONDA_CBR_600: configureHondaCbr600(this); break; case TT_HONDA_CBR_600_CUSTOM: configureHondaCbr600custom(this); break; case TT_MITSUBISHI: initializeMitsubishi4g18(this); break; case TT_DODGE_RAM: initDodgeRam(this); break; case TT_JEEP_4_CYL: initJeep_XJ_4cyl_2500(this); break; case TT_JEEP_18_2_2_2: initJeep18_2_2_2(this); break; case TT_SUBARU_7_6: initializeSubaru7_6(this); break; case TT_36_2_2_2: initialize36_2_2_2(this); break; case TT_2JZ_3_34: initialize2jzGE3_34(this); break; case TT_2JZ_1_12: initialize2jzGE1_12(this); break; case TT_NISSAN_SR20VE: initializeNissanSR20VE_4(this); break; case TT_NISSAN_SR20VE_360: initializeNissanSR20VE_4_360(this); break; case TT_ROVER_K: initializeRoverK(this); break; case TT_FIAT_IAW_P8: configureFiatIAQ_P8(this); break; case TT_GM_LS_24: initGmLS24(this); break; default: shapeDefinitionError = true; warning(CUSTOM_ERR_NO_SHAPE, "initializeTriggerShape() not implemented: %d", triggerConfig->type); } calculateExpectedEventCounts(useOnlyRisingEdgeForTrigger); version++; if (!shapeDefinitionError) { wave.checkSwitchTimes(getSize()); } } static void onFindIndexCallback(TriggerState *state) { for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { // todo: that's not the best place for this intermediate data storage, fix it! state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i]; } } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within TriggerShape */ uint32_t findTriggerZeroEventIndex(TriggerState *state, TriggerShape * shape, trigger_config_s const*triggerConfig DECLARE_ENGINE_PARAMETER_SUFFIX) { #if EFI_PROD_CODE || defined(__DOXYGEN__) efiAssert(CUSTOM_ERR_ASSERT, getRemainingStack(chThdGetSelfX()) > 128, "findPos", -1); #endif isInitializingTrigger = true; errorDetection.clear(); efiAssert(CUSTOM_ERR_ASSERT, state != NULL, "NULL state", -1); state->reset(); if (shape->shapeDefinitionError) { return 0; } // todo: should this variable be declared 'static' to reduce stack usage? TriggerStimulatorHelper helper; uint32_t syncIndex = helper.findTriggerSyncPoint(shape, state PASS_ENGINE_PARAMETER_SUFFIX); if (syncIndex == EFI_ERROR_CODE) { isInitializingTrigger = false; return syncIndex; } efiAssert(CUSTOM_ERR_ASSERT, state->getTotalRevolutionCounter() == 1, "findZero_revCounter", EFI_ERROR_CODE); #if EFI_UNIT_TEST || defined(__DOXYGEN__) if (printTriggerDebug) { printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex); } #endif /* EFI_UNIT_TEST */ /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle * * todo: add a comment why are we doing '2 * shape->getSize()' here? */ state->triggerCycleCallback = onFindIndexCallback; helper.assertSyncPositionAndSetDutyCycle(syncIndex, state, shape PASS_ENGINE_PARAMETER_SUFFIX); isInitializingTrigger = false; return syncIndex % shape->getSize(); } void initTriggerDecoderLogger(Logging *sharedLogger) { logger = sharedLogger; } void initTriggerDecoder(void) { #if EFI_GPIO_HARDWARE || defined(__DOXYGEN__) enginePins.triggerDecoderErrorPin.initPin("trg_err", boardConfiguration->triggerErrorPin, &boardConfiguration->triggerErrorPinMode); #endif /* EFI_GPIO_HARDWARE */ } #endif /* EFI_SHAFT_POSITION_INPUT */