/** * @file trigger_decoder.cpp * * @date Dec 24, 2013 * @author Andrey Belomutskiy, (c) 2012-2020 * * * * enable trigger_details * DBG_TRIGGER_COUNTERS = 5 * set debug_mode 5 * * This file is part of rusEfi - see http://rusefi.com * * rusEfi is free software; you can redistribute it and/or modify it under the terms of * the GNU General Public License as published by the Free Software Foundation; either * version 3 of the License, or (at your option) any later version. * * rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without * even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with this program. * If not, see . */ #include "global.h" #include "os_access.h" #include "obd_error_codes.h" #include "trigger_decoder.h" #include "cyclic_buffer.h" #include "efi_gpio.h" #include "engine.h" #include "engine_math.h" #include "trigger_central.h" #include "trigger_simulator.h" #include "perf_trace.h" #if EFI_SENSOR_CHART #include "sensor_chart.h" #endif TriggerState::TriggerState() { resetTriggerState(); } void TriggerState::setShaftSynchronized(bool value) { if (value) { if (!shaft_is_synchronized) { // just got synchronized mostRecentSyncTime = getTimeNowNt(); } } else { // sync loss mostRecentSyncTime = 0; } shaft_is_synchronized = value; } void TriggerState::resetTriggerState() { setShaftSynchronized(false); toothed_previous_time = 0; memset(toothDurations, 0, sizeof(toothDurations)); totalRevolutionCounter = 0; totalTriggerErrorCounter = 0; orderingErrorCounter = 0; // we need this initial to have not_running at first invocation previousShaftEventTimeNt = (efitimems_t) -10 * NT_PER_SECOND; lastDecodingErrorTime = US2NT(-10000000LL); someSortOfTriggerError = false; memset(toothDurations, 0, sizeof(toothDurations)); curSignal = SHAFT_PRIMARY_FALLING; prevSignal = SHAFT_PRIMARY_FALLING; startOfCycleNt = 0; resetCurrentCycleState(); memset(expectedTotalTime, 0, sizeof(expectedTotalTime)); totalEventCountBase = 0; isFirstEvent = true; } void TriggerState::setTriggerErrorState() { lastDecodingErrorTime = getTimeNowNt(); someSortOfTriggerError = true; } void TriggerState::resetCurrentCycleState() { memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount)); memset(currentCycle.timeOfPreviousEventNt, 0, sizeof(currentCycle.timeOfPreviousEventNt)); memset(currentCycle.totalTimeNt, 0, sizeof(currentCycle.totalTimeNt)); currentCycle.current_index = 0; } TriggerStateWithRunningStatistics::TriggerStateWithRunningStatistics() : //https://en.cppreference.com/w/cpp/language/zero_initialization timeOfLastEvent(), instantRpmValue() { } #if EFI_SHAFT_POSITION_INPUT EXTERN_ENGINE; #if ! EFI_PROD_CODE bool printTriggerDebug = false; bool printTriggerTrace = false; float actualSynchGap; #endif /* ! EFI_PROD_CODE */ static Logging * logger = nullptr; void TriggerWaveform::initializeSyncPoint(TriggerState *state, const TriggerConfiguration * triggerConfiguration, trigger_config_s const*triggerConfig) { triggerShapeSynchPointIndex = state->findTriggerZeroEventIndex(this, triggerConfiguration, triggerConfig); } /** * Calculate 'shape.triggerShapeSynchPointIndex' value using 'TriggerState *state' */ void calculateTriggerSynchPoint(TriggerWaveform *shape, TriggerState *state DECLARE_ENGINE_PARAMETER_SUFFIX) { state->resetTriggerState(); #if EFI_PROD_CODE efiAssertVoid(CUSTOM_TRIGGER_STACK, getCurrentRemainingStack() > EXPECTED_REMAINING_STACK, "calc s"); #endif trigger_config_s const*triggerConfig = &engineConfiguration->trigger; engine->triggerErrorDetection.clear(); shape->initializeSyncPoint(state, &engine->primaryTriggerConfiguration, triggerConfig); int length = shape->getLength(); engine->engineCycleEventCount = length; efiAssertVoid(CUSTOM_SHAPE_LEN_ZERO, length > 0, "shapeLength=0"); if (length >= PWM_PHASE_MAX_COUNT) { firmwareError(CUSTOM_ERR_TRIGGER_WAVEFORM_TOO_LONG, "Trigger length above maximum: %d", length); shape->setShapeDefinitionError(true); return; } if (shape->getSize() == 0) { firmwareError(CUSTOM_ERR_TRIGGER_ZERO, "triggerShape size is zero"); } } void prepareEventAngles(TriggerWaveform *shape, TriggerFormDetails *details DECLARE_ENGINE_PARAMETER_SUFFIX) { float firstAngle = shape->getAngle(shape->triggerShapeSynchPointIndex); assertAngleRange(firstAngle, "firstAngle", CUSTOM_TRIGGER_SYNC_ANGLE); int riseOnlyIndex = 0; int length = shape->getLength(); memset(details->eventAngles, 0, sizeof(details->eventAngles)); for (int eventIndex = 0; eventIndex < length; eventIndex++) { if (eventIndex == 0) { // explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature details->eventAngles[0] = 0; // this value would be used in case of front-only details->eventAngles[1] = 0; } else { assertAngleRange(shape->triggerShapeSynchPointIndex, "triggerShapeSynchPointIndex", CUSTOM_TRIGGER_SYNC_ANGLE2); unsigned int triggerDefinitionCoordinate = (shape->triggerShapeSynchPointIndex + eventIndex) % length; efiAssertVoid(CUSTOM_TRIGGER_CYCLE, engine->engineCycleEventCount != 0, "zero engineCycleEventCount"); int triggerDefinitionIndex = triggerDefinitionCoordinate >= shape->privateTriggerDefinitionSize ? triggerDefinitionCoordinate - shape->privateTriggerDefinitionSize : triggerDefinitionCoordinate; float angle = shape->getAngle(triggerDefinitionCoordinate) - firstAngle; efiAssertVoid(CUSTOM_TRIGGER_CYCLE, !cisnan(angle), "trgSyncNaN"); fixAngle(angle, "trgSync", CUSTOM_TRIGGER_SYNC_ANGLE_RANGE); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { if (shape->isRiseEvent[triggerDefinitionIndex]) { riseOnlyIndex += 2; details->eventAngles[riseOnlyIndex] = angle; details->eventAngles[riseOnlyIndex + 1] = angle; } } else { details->eventAngles[eventIndex] = angle; } } } } int64_t TriggerState::getTotalEventCounter() const { return totalEventCountBase + currentCycle.current_index; } int TriggerState::getTotalRevolutionCounter() const { return totalRevolutionCounter; } void TriggerStateWithRunningStatistics::movePreSynchTimestamps(DECLARE_ENGINE_PARAMETER_SIGNATURE) { // here we take timestamps of events which happened prior to synchronization and place them // at appropriate locations for (int i = 0; i < spinningEventIndex;i++) { timeOfLastEvent[getTriggerSize() - i] = spinningEvents[i]; } } float TriggerStateWithRunningStatistics::calculateInstantRpm(TriggerFormDetails *triggerFormDetails, int *prevIndexOut, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { int current_index = currentCycle.current_index; // local copy so that noone changes the value on us timeOfLastEvent[current_index] = nowNt; /** * Here we calculate RPM based on last 90 degrees */ angle_t currentAngle = triggerFormDetails->eventAngles[current_index]; // todo: make this '90' depend on cylinder count or trigger shape? if (cisnan(currentAngle)) { return NOISY_RPM; } angle_t previousAngle = currentAngle - 90; fixAngle(previousAngle, "prevAngle", CUSTOM_ERR_TRIGGER_ANGLE_RANGE); // todo: prevIndex should be pre-calculated int prevIndex = triggerFormDetails->triggerIndexByAngle[(int)previousAngle]; if (prevIndexOut) { *prevIndexOut = prevIndex; } // now let's get precise angle for that event angle_t prevIndexAngle = triggerFormDetails->eventAngles[prevIndex]; efitick_t time90ago = timeOfLastEvent[prevIndex]; if (time90ago == 0) { return prevInstantRpmValue; } // we are OK to subtract 32 bit value from more precise 64 bit since the result would 32 bit which is // OK for small time differences like this one uint32_t time = nowNt - time90ago; angle_t angleDiff = currentAngle - prevIndexAngle; // todo: angle diff should be pre-calculated fixAngle(angleDiff, "angleDiff", CUSTOM_ERR_6561); // just for safety if (time == 0) return prevInstantRpmValue; float instantRpm = (60000000.0 / 360 * US_TO_NT_MULTIPLIER) * angleDiff / time; instantRpmValue[current_index] = instantRpm; // This fixes early RPM instability based on incomplete data if (instantRpm < RPM_LOW_THRESHOLD) return prevInstantRpmValue; prevInstantRpmValue = instantRpm; return instantRpm; } void TriggerStateWithRunningStatistics::setLastEventTimeForInstantRpm(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { if (shaft_is_synchronized) { return; } // here we remember tooth timestamps which happen prior to synchronization if (spinningEventIndex >= PRE_SYNC_EVENTS) { // too many events while trying to find synchronization point // todo: better implementation would be to shift here or use cyclic buffer so that we keep last // 'PRE_SYNC_EVENTS' events return; } spinningEvents[spinningEventIndex++] = nowNt; } void TriggerStateWithRunningStatistics::runtimeStatistics(TriggerFormDetails *triggerFormDetails, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { if (engineConfiguration->debugMode == DBG_INSTANT_RPM) { instantRpm = calculateInstantRpm(triggerFormDetails, NULL, nowNt PASS_ENGINE_PARAMETER_SUFFIX); } if (ENGINE(sensorChartMode) == SC_RPM_ACCEL || ENGINE(sensorChartMode) == SC_DETAILED_RPM) { int prevIndex; instantRpm = calculateInstantRpm(triggerFormDetails, &prevIndex, nowNt PASS_ENGINE_PARAMETER_SUFFIX); #if EFI_SENSOR_CHART angle_t currentAngle = triggerFormDetails->eventAngles[currentCycle.current_index]; if (CONFIG(sensorChartMode) == SC_DETAILED_RPM) { scAddData(currentAngle, instantRpm); } else { scAddData(currentAngle, instantRpm / instantRpmValue[prevIndex]); } #endif /* EFI_SENSOR_CHART */ } } bool TriggerState::isValidIndex(const TriggerWaveform *triggerShape) const { return currentCycle.current_index < triggerShape->getSize(); } static trigger_wheel_e eventIndex[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; static trigger_value_e eventType[6] = { TV_FALL, TV_RISE, TV_FALL, TV_RISE, TV_FALL, TV_RISE }; #define getCurrentGapDuration(nowNt) \ (isFirstEvent ? 0 : (nowNt) - toothed_previous_time) #if EFI_UNIT_TEST #define PRINT_INC_INDEX if (printTriggerTrace) {\ printf("nextTriggerEvent index=%d\r\n", currentCycle.current_index); \ } #else #define PRINT_INC_INDEX {} #endif /* EFI_UNIT_TEST */ #define nextTriggerEvent() \ { \ uint32_t prevTime = currentCycle.timeOfPreviousEventNt[triggerWheel]; \ if (prevTime != 0) { \ /* even event - apply the value*/ \ currentCycle.totalTimeNt[triggerWheel] += (nowNt - prevTime); \ currentCycle.timeOfPreviousEventNt[triggerWheel] = 0; \ } else { \ /* odd event - start accumulation */ \ currentCycle.timeOfPreviousEventNt[triggerWheel] = nowNt; \ } \ if (triggerConfiguration->isUseOnlyRisingEdgeForTrigger()) {currentCycle.current_index++;} \ currentCycle.current_index++; \ PRINT_INC_INDEX; \ } #define considerEventForGap() (!triggerShape->useOnlyPrimaryForSync || isPrimary) #define needToSkipFall(type) ((!triggerShape->gapBothDirections) && (( triggerShape->useRiseEdge) && (type != TV_RISE))) #define needToSkipRise(type) ((!triggerShape->gapBothDirections) && ((!triggerShape->useRiseEdge) && (type != TV_FALL))) int TriggerState::getCurrentIndex() const { return currentCycle.current_index; } void TriggerCentral::validateCamVvtCounters() { // micro-optimized 'totalRevolutionCounter % 256' int camVvtValidationIndex = triggerState.getTotalRevolutionCounter() & 0xFF; if (camVvtValidationIndex == 0) { vvtCamCounter = 0; } else if (camVvtValidationIndex == 0xFE && vvtCamCounter < 60) { // magic logic: we expect at least 60 CAM/VVT events for each 256 trigger cycles, otherwise throw a code warning(OBD_Camshaft_Position_Sensor_Circuit_Range_Performance, "no CAM signals"); } } void TriggerState::incrementTotalEventCounter() { totalRevolutionCounter++; } bool TriggerState::isEvenRevolution() const { return totalRevolutionCounter & 1; } bool TriggerState::validateEventCounters(TriggerWaveform *triggerShape) const { bool isDecodingError = false; for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) { isDecodingError |= (currentCycle.eventCount[i] != triggerShape->expectedEventCount[i]); } #if EFI_UNIT_TEST printf("sync point: isDecodingError=%d\r\n", isDecodingError); if (isDecodingError) { for (int i = 0;i < PWM_PHASE_MAX_WAVE_PER_PWM;i++) { printf("count: cur=%d exp=%d\r\n", currentCycle.eventCount[i], triggerShape->expectedEventCount[i]); } } #endif /* EFI_UNIT_TEST */ return isDecodingError; } void TriggerState::onShaftSynchronization( const TriggerStateCallback triggerCycleCallback, const efitick_t nowNt, const TriggerWaveform *triggerShape) { if (triggerCycleCallback) { triggerCycleCallback(this); } startOfCycleNt = nowNt; resetCurrentCycleState(); incrementTotalEventCounter(); totalEventCountBase += triggerShape->getSize(); #if EFI_UNIT_TEST if (printTriggerDebug) { printf("onShaftSynchronization index=%d %d\r\n", currentCycle.current_index, totalRevolutionCounter); } #endif /* EFI_UNIT_TEST */ } /** * @brief Trigger decoding happens here * VR falls are filtered out and some VR noise detection happens prior to invoking this method, for * Hall this method is invoked every time we have a fall or rise on one of the trigger sensors. * This method changes the state of trigger_state_s data structure according to the trigger event * @param signal type of event which just happened * @param nowNt current time */ void TriggerState::decodeTriggerEvent( const TriggerWaveform *triggerShape, const TriggerStateCallback triggerCycleCallback, TriggerStateListener * triggerStateListener, const TriggerConfiguration * triggerConfiguration, const trigger_event_e signal, const efitick_t nowNt) { ScopePerf perf(PE::DecodeTriggerEvent); if (nowNt - previousShaftEventTimeNt > NT_PER_SECOND) { /** * We are here if there is a time gap between now and previous shaft event - that means the engine is not running. * That means we have lost synchronization since the engine is not running :) */ setShaftSynchronized(false); if (triggerStateListener) { triggerStateListener->OnTriggerSynchronizationLost(); } } previousShaftEventTimeNt = nowNt; bool useOnlyRisingEdgeForTrigger = triggerConfiguration->isUseOnlyRisingEdgeForTrigger(); efiAssertVoid(CUSTOM_TRIGGER_UNEXPECTED, signal <= SHAFT_3RD_RISING, "unexpected signal"); trigger_wheel_e triggerWheel = eventIndex[signal]; trigger_value_e type = eventType[signal]; if (!useOnlyRisingEdgeForTrigger && curSignal == prevSignal) { orderingErrorCounter++; } prevSignal = curSignal; curSignal = signal; currentCycle.eventCount[triggerWheel]++; efiAssertVoid(CUSTOM_OBD_93, toothed_previous_time <= nowNt, "toothed_previous_time after nowNt"); efitick_t currentDurationLong = getCurrentGapDuration(nowNt); /** * For performance reasons, we want to work with 32 bit values. If there has been more then * 10 seconds since previous trigger event we do not really care. */ toothDurations[0] = currentDurationLong > 10 * NT_PER_SECOND ? 10 * NT_PER_SECOND : currentDurationLong; bool isPrimary = triggerWheel == T_PRIMARY; if (needToSkipFall(type) || needToSkipRise(type) || (!considerEventForGap())) { #if EFI_UNIT_TEST if (printTriggerTrace) { printf("%s isLessImportant %s now=%d index=%d\r\n", getTrigger_type_e(triggerConfiguration->getType()), getTrigger_event_e(signal), (int)nowNt, currentCycle.current_index); } #endif /* EFI_UNIT_TEST */ /** * For less important events we simply increment the index. */ nextTriggerEvent() ; } else { #if EFI_UNIT_TEST if (printTriggerTrace) { printf("%s event %s %d\r\n", getTrigger_type_e(triggerConfiguration->getType()), getTrigger_event_e(signal), nowNt); } #endif /* EFI_UNIT_TEST */ isFirstEvent = false; // todo: skip a number of signal from the beginning #if EFI_PROD_CODE // scheduleMsg(&logger, "from %.2f to %.2f %d %d", triggerConfig->syncRatioFrom, triggerConfig->syncRatioTo, toothDurations[0], shaftPositionState->toothDurations[1]); // scheduleMsg(&logger, "ratio %.2f", 1.0 * toothDurations[0]/ shaftPositionState->toothDurations[1]); #else if (printTriggerTrace) { printf("decodeTriggerEvent ratio %.2f: current=%d previous=%d\r\n", 1.0 * toothDurations[0] / toothDurations[1], toothDurations[0], toothDurations[1]); } #endif bool isSynchronizationPoint; bool wasSynchronized = shaft_is_synchronized; DISPLAY_STATE(Trigger_State) DISPLAY_TEXT(Current_Gap); DISPLAY(DISPLAY_FIELD(currentGap)); DISPLAY_TEXT(EOL); DISPLAY_STATE(Trigger_Central) DISPLAY(DISPLAY_CONFIG(TRIGGERINPUTPINS1)); DISPLAY_TEXT("Trigger 1: Fall"); DISPLAY(DISPLAY_FIELD(HWEVENTCOUNTERS1)); DISPLAY_TEXT(", Rise"); DISPLAY(DISPLAY_FIELD(HWEVENTCOUNTERS2)); DISPLAY_TEXT(EOL); DISPLAY(DISPLAY_CONFIG(TRIGGERINPUTPINS2)); DISPLAY_TEXT("Trigger 2: Fall"); DISPLAY(DISPLAY_FIELD(HWEVENTCOUNTERS3)); DISPLAY_TEXT(", Rise"); DISPLAY(DISPLAY_FIELD(HWEVENTCOUNTERS4)); DISPLAY_TEXT(EOL); DISPLAY_TEXT(VVT_1); DISPLAY(DISPLAY_CONFIG(CAMINPUTS1)); DISPLAY(DISPLAY_FIELD(vvtEventRiseCounter)); DISPLAY(DISPLAY_FIELD(vvtEventFallCounter)); DISPLAY(DISPLAY_FIELD(vvtCamCounter)); if (triggerShape->isSynchronizationNeeded) { currentGap = 1.0 * toothDurations[0] / toothDurations[1]; if (triggerConfiguration->getDebugMode() == DBG_TRIGGER_COUNTERS) { #if EFI_TUNER_STUDIO tsOutputChannels.debugFloatField6 = currentGap; tsOutputChannels.debugIntField3 = currentCycle.current_index; #endif /* EFI_TUNER_STUDIO */ } bool isSync = true; for (int i = 0;isyncronizationRatioFrom[i]) || (toothDurations[i] > toothDurations[i + 1] * triggerShape->syncronizationRatioFrom[i] && toothDurations[i] < toothDurations[i + 1] * triggerShape->syncronizationRatioTo[i]); isSync &= isGapCondition; } isSynchronizationPoint = isSync; if (isSynchronizationPoint) { enginePins.debugTriggerSync.setValue(1); } /** * todo: technically we can afford detailed logging even with 60/2 as long as low RPM * todo: figure out exact threshold as a function of RPM and tooth count? * Open question what is 'triggerShape->getSize()' for 60/2 is it 58 or 58*2 or 58*4? */ bool silentTriggerError = triggerShape->getSize() > 40 && triggerConfiguration->isSilentTriggerError(); #if EFI_UNIT_TEST actualSynchGap = 1.0 * toothDurations[0] / toothDurations[1]; #endif /* EFI_UNIT_TEST */ #if EFI_PROD_CODE || EFI_SIMULATOR if (triggerConfiguration->isVerboseTriggerSynchDetails() || (someSortOfTriggerError && !silentTriggerError)) { for (int i = 0;isyncronizationRatioFrom[i]; if (cisnan(ratioFrom)) { // we do not track gap at this depth continue; } float gap = 1.0 * toothDurations[i] / toothDurations[i + 1]; if (cisnan(gap)) { scheduleMsg(logger, "index=%d NaN gap, you have noise issues?", i); } else { scheduleMsg(logger, "%s rpm=%d time=%d index=%d: gap=%.3f expected from %.3f to %.3f error=%s", triggerConfiguration->getPrintPrefix(), GET_RPM(), /* cast is needed to make sure we do not put 64 bit value to stack*/ (int)getTimeNowSeconds(), i, gap, ratioFrom, triggerShape->syncronizationRatioTo[i], boolToString(someSortOfTriggerError)); } } } #else if (printTriggerTrace) { float gap = 1.0 * toothDurations[0] / toothDurations[1]; for (int i = 0;isyncronizationRatioFrom[i], triggerShape->syncronizationRatioTo[i], boolToString(someSortOfTriggerError)); } } #endif /* EFI_PROD_CODE */ enginePins.debugTriggerSync.setValue(0); } else { /** * We are here in case of a wheel without synchronization - we just need to count events, * synchronization point simply happens once we have the right number of events * * in case of noise the counter could be above the expected number of events, that's why 'more or equals' and not just 'equals' */ #if EFI_UNIT_TEST if (printTriggerTrace) { printf("decodeTriggerEvent sync=%d index=%d size=%d\r\n", shaft_is_synchronized, currentCycle.current_index, triggerShape->getSize()); } #endif /* EFI_UNIT_TEST */ unsigned int endOfCycleIndex = triggerShape->getSize() - (triggerConfiguration->isUseOnlyRisingEdgeForTrigger() ? 2 : 1); isSynchronizationPoint = !shaft_is_synchronized || (currentCycle.current_index >= endOfCycleIndex); #if EFI_UNIT_TEST if (printTriggerTrace) { printf("decodeTriggerEvent decodeTriggerEvent isSynchronizationPoint=%d index=%d size=%d\r\n", isSynchronizationPoint, currentCycle.current_index, triggerShape->getSize()); } #endif /* EFI_UNIT_TEST */ } #if EFI_UNIT_TEST if (printTriggerTrace) { printf("decodeTriggerEvent %s isSynchronizationPoint=%d index=%d %s\r\n", getTrigger_type_e(triggerConfiguration->getType()), isSynchronizationPoint, currentCycle.current_index, getTrigger_event_e(signal)); } #endif /* EFI_UNIT_TEST */ if (isSynchronizationPoint) { if (triggerStateListener) { triggerStateListener->OnTriggerSyncronization(wasSynchronized); } setShaftSynchronized(true); // this call would update duty cycle values nextTriggerEvent() ; onShaftSynchronization(triggerCycleCallback, nowNt, triggerShape); } else { /* if (!isSynchronizationPoint) */ nextTriggerEvent() ; } for (int i = GAP_TRACKING_LENGTH; i > 0; i--) { toothDurations[i] = toothDurations[i - 1]; } toothed_previous_time = nowNt; } if (!isValidIndex(triggerShape) && triggerStateListener) { triggerStateListener->OnTriggerInvalidIndex(currentCycle.current_index); return; } if (someSortOfTriggerError) { if (getTimeNowNt() - lastDecodingErrorTime > NT_PER_SECOND) { someSortOfTriggerError = false; } } // Needed for early instant-RPM detection if (triggerStateListener) { triggerStateListener->OnTriggerStateProperState(nowNt); } } static void onFindIndexCallback(TriggerState *state) { for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) { // todo: that's not the best place for this intermediate data storage, fix it! state->expectedTotalTime[i] = state->currentCycle.totalTimeNt[i]; } } /** * Trigger shape is defined in a way which is convenient for trigger shape definition * On the other hand, trigger decoder indexing begins from synchronization event. * * This function finds the index of synchronization event within TriggerWaveform */ uint32_t TriggerState::findTriggerZeroEventIndex(TriggerWaveform * shape, const TriggerConfiguration * triggerConfiguration, trigger_config_s const*triggerConfig) { UNUSED(triggerConfig); #if EFI_PROD_CODE efiAssert(CUSTOM_ERR_ASSERT, getCurrentRemainingStack() > 128, "findPos", -1); #endif resetTriggerState(); if (shape->shapeDefinitionError) { return 0; } // todo: should this variable be declared 'static' to reduce stack usage? TriggerStimulatorHelper helper; uint32_t syncIndex = helper.findTriggerSyncPoint(shape, triggerConfiguration, this); if (syncIndex == EFI_ERROR_CODE) { return syncIndex; } efiAssert(CUSTOM_ERR_ASSERT, getTotalRevolutionCounter() == 1, "findZero_revCounter", EFI_ERROR_CODE); #if EFI_UNIT_TEST if (printTriggerDebug) { printf("findTriggerZeroEventIndex: syncIndex located %d!\r\n", syncIndex); } #endif /* EFI_UNIT_TEST */ /** * Now that we have just located the synch point, we can simulate the whole cycle * in order to calculate expected duty cycle * * todo: add a comment why are we doing '2 * shape->getSize()' here? */ helper.assertSyncPositionAndSetDutyCycle(onFindIndexCallback, triggerConfiguration, syncIndex, this, shape); return syncIndex % shape->getSize(); } void initTriggerDecoderLogger(Logging *sharedLogger) { logger = sharedLogger; } #endif /* EFI_SHAFT_POSITION_INPUT */