/** * @file adc_inputs.cpp * @brief Low level ADC code * * @date Jan 14, 2013 * @author Andrey Belomutskiy, (c) 2012-2014 */ #include "main.h" #include "engine_configuration.h" #include "adc_inputs.h" #include "AdcConfiguration.h" #include "pin_repository.h" #include "engine_math.h" #include "board_test.h" #if EFI_SPEED_DENSITY #include "map_averaging.h" #endif /* EFI_SPEED_DENSITY */ AdcConfiguration::AdcConfiguration(ADCConversionGroup* hwConfig) { this->hwConfig = hwConfig; channelCount = 0; conversionCount = 0; hwConfig->sqr1 = 0; hwConfig->sqr2 = 0; hwConfig->sqr3 = 0; memset(internalAdcIndexByHardwareIndex, 0xFFFFFFFF, sizeof(internalAdcIndexByHardwareIndex)); } #define ADC_GRP1_BUF_DEPTH_FAST 1 #define ADC_NUMBER_CHANNELS_FAST 1 // todo: migrate from hardware timer to software ADC conversion triggering // todo: I guess we would have to use ChibiOS timer and not our own timer because // todo: adcStartConversionI requires OS lock. currently slow ADC is 10Hz (?) #define PWM_FREQ_SLOW 5000 /* PWM clock frequency. I wonder what does this setting mean? */ #define PWM_PERIOD_SLOW 500 /* PWM period (in PWM ticks). */ /** * 8000 RPM is 133Hz * If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC */ // todo: migrate to continues ADC mode? probably not - we cannot afford the callback in // todo: continues mode. todo: look into our options #define PWM_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */ #define PWM_PERIOD_FAST 10 /* PWM period (in PWM ticks). */ #define ADC_SLOW_DEVICE ADCD1 #define ADC_FAST_DEVICE ADCD2 #define ADC_DEBUG_KEY "adcDebug" static char LOGGING_BUFFER[500]; static Logging logger; static int adcCallbackCounter_slow = 0; static int adcDebugReporting = FALSE; static int fastAdcValue; extern engine_configuration_s *engineConfiguration; extern board_configuration_s *boardConfiguration; static adc_hw_helper_s slowAdcState; /* * ADC samples buffer. */ static adcsample_t samples_fast[ADC_NUMBER_CHANNELS_FAST * ADC_GRP1_BUF_DEPTH_FAST]; static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) { adcsample_t result = 0; int i; for (i = 0; i < bufDepth; i++) { result += samples[index]; index += numChannels; } return result / bufDepth; } static void adc_callback_slow(ADCDriver *adcp, adcsample_t *buffer, size_t n); static void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n); #define MY_SAMPLING_SLOW ADC_SAMPLE_480 #define MY_SAMPLING_FAST ADC_SAMPLE_28 /* * ADC conversion group. */ static ADCConversionGroup adcgrpcfgSlow = { FALSE, 0, adc_callback_slow, NULL, /* HW dependent part.*/ ADC_TwoSamplingDelay_20Cycles, // cr1 ADC_CR2_SWSTART, // cr2 ADC_SMPR1_SMP_AN10(MY_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN11(MY_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN12(MY_SAMPLING_SLOW) | ADC_SMPR1_SMP_AN13(MY_SAMPLING_SLOW), // sample times for channels 10...18 ADC_SMPR2_SMP_AN0(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN1(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN3(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN4(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN5(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN6(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN7(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN8(MY_SAMPLING_SLOW) | ADC_SMPR2_SMP_AN9(MY_SAMPLING_SLOW) , // In this field must be specified the sample times for channels 0...9 0, // Conversion group sequence 13...16 + sequence length 0 // | ADC_SQR2_SQ7_N(ADC_CHANNEL_IN12) /* PC2 - green */ // | ADC_SQR2_SQ8_N(ADC_CHANNEL_IN13) /* PC3 - yellow maf? */ ,// Conversion group sequence 7...12 0 // | ADC_SQR3_SQ1_N(ADC_CHANNEL_IN6) /* PA6 - white */ // | ADC_SQR3_SQ2_N(ADC_CHANNEL_IN7) /* PA7 - blue */ // | ADC_SQR3_SQ3_N(ADC_CHANNEL_IN14) /* PC4 - green */ // | ADC_SQR3_SQ4_N(ADC_CHANNEL_IN15) /* PC5 - yellow */ // | ADC_SQR3_SQ5_N(ADC_CHANNEL_IN8) /* PB0 - blue */ // | ADC_SQR3_SQ6_N(ADC_CHANNEL_IN9) /* PB1 - white */ // Conversion group sequence 1...6 }; AdcConfiguration slowAdc(&adcgrpcfgSlow); static ADCConversionGroup adcgrpcfg_fast = { FALSE, 0 /* num_channels */, adc_callback_fast, NULL, /* HW dependent part.*/ ADC_TwoSamplingDelay_5Cycles, // cr1 ADC_CR2_SWSTART, // cr2 0, // sample times for channels 10...18 ADC_SMPR2_SMP_AN0(MY_SAMPLING_FAST), // In this field must be specified the sample times for channels 0...9 ADC_SQR1_NUM_CH(ADC_NUMBER_CHANNELS_FAST), // Conversion group sequence 13...16 + sequence length 0, // Conversion group sequence 7...12 0 // Conversion group sequence 1...6 }; AdcConfiguration fastAdc(&adcgrpcfg_fast); static void pwmpcb_slow(PWMDriver *pwmp) { #if EFI_INTERNAL_ADC (void) pwmp; /* Starts an asynchronous ADC conversion operation, the conversion will be executed in parallel to the current PWM cycle and will terminate before the next PWM cycle.*/ chSysLockFromIsr() ; if (ADC_SLOW_DEVICE.state != ADC_READY && ADC_SLOW_DEVICE.state != ADC_COMPLETE && ADC_SLOW_DEVICE.state != ADC_ERROR) { // todo: why and when does this happen? firmwareError("ADC slow not ready?"); slowAdc.errorsCount++; chSysUnlockFromIsr() ; return; } slowAdc.errorsCount++; adcStartConversionI(&ADC_SLOW_DEVICE, &adcgrpcfgSlow, slowAdcState.samples, ADC_GRP1_BUF_DEPTH_SLOW); chSysUnlockFromIsr() ; slowAdc.conversionCount++; #endif } static void pwmpcb_fast(PWMDriver *pwmp) { #if EFI_INTERNAL_ADC (void) pwmp; /* * Starts an asynchronous ADC conversion operation, the conversion * will be executed in parallel to the current PWM cycle and will * terminate before the next PWM cycle. */ chSysLockFromIsr() ; if (ADC_FAST_DEVICE.state != ADC_READY && ADC_FAST_DEVICE.state != ADC_COMPLETE && ADC_FAST_DEVICE.state != ADC_ERROR) { fastAdc.errorsCount++; // todo: when? why? firmwareError("ADC fast not ready?"); chSysUnlockFromIsr() ; return; } adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfg_fast, samples_fast, ADC_GRP1_BUF_DEPTH_FAST); chSysUnlockFromIsr() ; fastAdc.conversionCount++; #endif } int getInternalAdcValue(adc_channel_e hwChannel) { if (boardConfiguration->adcHwChannelEnabled[hwChannel] == ADC_FAST) return fastAdcValue; int internalIndex = slowAdc.internalAdcIndexByHardwareIndex[hwChannel]; return slowAdc.getAdcValueByIndex(internalIndex); } static PWMConfig pwmcfg_slow = { PWM_FREQ_SLOW, PWM_PERIOD_SLOW, pwmpcb_slow, { { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL } }, /* HW dependent part.*/ 0, 0 }; static PWMConfig pwmcfg_fast = { PWM_FREQ_FAST, PWM_PERIOD_FAST, pwmpcb_fast, { { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL } }, /* HW dependent part.*/ 0, 0 }; static void initAdcPin(ioportid_t port, int pin, const char *msg) { print("adc %s\r\n", msg); mySetPadMode("adc input", port, pin, PAL_MODE_INPUT_ANALOG); } adc_channel_e getAdcChannel(brain_pin_e pin) { switch (pin) { case GPIOA_0: return EFI_ADC_0; case GPIOA_1: return EFI_ADC_1; case GPIOA_2: return EFI_ADC_2; case GPIOA_3: return EFI_ADC_3; case GPIOA_4: return EFI_ADC_4; case GPIOA_5: return EFI_ADC_5; case GPIOA_6: return EFI_ADC_6; case GPIOA_7: return EFI_ADC_7; case GPIOB_0: return EFI_ADC_8; case GPIOB_1: return EFI_ADC_9; case GPIOC_0: return EFI_ADC_10; case GPIOC_1: return EFI_ADC_11; case GPIOC_2: return EFI_ADC_12; case GPIOC_3: return EFI_ADC_13; case GPIOC_4: return EFI_ADC_14; case GPIOC_5: return EFI_ADC_15; default: return EFI_ADC_ERROR; } } GPIO_TypeDef* getAdcChannelPort(adc_channel_e hwChannel) { // todo: replace this with an array :) switch (hwChannel) { case ADC_CHANNEL_IN0: return GPIOA; case ADC_CHANNEL_IN1: return GPIOA; case ADC_CHANNEL_IN2: return GPIOA; case ADC_CHANNEL_IN3: return GPIOA; case ADC_CHANNEL_IN4: return GPIOA; case ADC_CHANNEL_IN5: return GPIOA; case ADC_CHANNEL_IN6: return GPIOA; case ADC_CHANNEL_IN7: return GPIOA; case ADC_CHANNEL_IN8: return GPIOB; case ADC_CHANNEL_IN9: return GPIOB; case ADC_CHANNEL_IN10: return GPIOC; case ADC_CHANNEL_IN11: return GPIOC; case ADC_CHANNEL_IN12: return GPIOC; case ADC_CHANNEL_IN13: return GPIOC; case ADC_CHANNEL_IN14: return GPIOC; case ADC_CHANNEL_IN15: return GPIOC; default: firmwareError("Unknown hw channel"); return NULL; } } const char * getAdcMode(adc_channel_e hwChannel) { if (slowAdc.isHwUsed(hwChannel)) { return "slow"; } if (fastAdc.isHwUsed(hwChannel)) { return "fast"; } return "INACTIVE"; } int getAdcChannelPin(adc_channel_e hwChannel) { // todo: replace this with an array :) switch (hwChannel) { case ADC_CHANNEL_IN0: return 0; case ADC_CHANNEL_IN1: return 1; case ADC_CHANNEL_IN2: return 2; case ADC_CHANNEL_IN3: return 3; case ADC_CHANNEL_IN4: return 4; case ADC_CHANNEL_IN5: return 5; case ADC_CHANNEL_IN6: return 6; case ADC_CHANNEL_IN7: return 7; case ADC_CHANNEL_IN8: return 0; case ADC_CHANNEL_IN9: return 1; case ADC_CHANNEL_IN10: return 0; case ADC_CHANNEL_IN11: return 1; case ADC_CHANNEL_IN12: return 2; case ADC_CHANNEL_IN13: return 3; case ADC_CHANNEL_IN14: return 4; case ADC_CHANNEL_IN15: return 5; default: firmwareError("Unknown hw channel"); return -1; } } static void initAdcHwChannel(adc_channel_e hwChannel) { GPIO_TypeDef* port = getAdcChannelPort(hwChannel); int pin = getAdcChannelPin(hwChannel); initAdcPin(port, pin, "hw"); } int AdcConfiguration::size() { return channelCount; } int AdcConfiguration::getAdcValueByIndex(int internalIndex) { return values.adc_data[internalIndex]; } void AdcConfiguration::init(void) { hwConfig->num_channels = size(); hwConfig->sqr1 += ADC_SQR1_NUM_CH(size()); } bool AdcConfiguration::isHwUsed(adc_channel_e hwChannelIndex) { for (int i = 0; i < channelCount; i++) { if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) { return true; } } return false; } void AdcConfiguration::addChannel(adc_channel_e hwChannel) { int logicChannel = channelCount++; internalAdcIndexByHardwareIndex[hwChannel] = logicChannel; hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel; if (logicChannel < 6) { hwConfig->sqr3 += (hwChannel) << (5 * logicChannel); } else { hwConfig->sqr2 += (hwChannel) << (5 * (logicChannel - 6)); } // todo: support for more then 12 channels? not sure how needed it would be initAdcHwChannel(hwChannel); } static void printAdcValue(adc_channel_e channel) { int value = getAdcValue(channel); float volts = adcToVoltsDivided(value); scheduleMsg(&logger, "adc voltage : %f", volts); } adc_channel_e AdcConfiguration::getAdcHardwareIndexByInternalIndex(int index) { return hardwareIndexByIndernalAdcIndex[index]; } static void printFullAdcReport(void) { scheduleMsg(&logger, "fast %d slow %d", fastAdc.conversionCount, slowAdc.conversionCount); for (int index = 0; index < slowAdc.size(); index++) { appendMsgPrefix(&logger); adc_channel_e hwIndex = slowAdc.getAdcHardwareIndexByInternalIndex(index); GPIO_TypeDef* port = getAdcChannelPort(hwIndex); int pin = getAdcChannelPin(hwIndex); int adcValue = slowAdc.getAdcValueByIndex(index); appendPrintf(&logger, " ch%d %s%d", index, portname(port), pin); appendPrintf(&logger, " ADC%d 12bit=%d", hwIndex, adcValue); float volts = adcToVolts(adcValue); appendPrintf(&logger, " v=%f", volts); appendMsgPostfix(&logger); scheduleLogging(&logger); } } static void printStatus(void) { scheduleIntValue(&logger, ADC_DEBUG_KEY, adcDebugReporting); } static void setAdcDebugReporting(int value) { adcDebugReporting = value; printStatus(); } static void adc_callback_slow(ADCDriver *adcp, adcsample_t *buffer, size_t n) { (void) buffer; (void) n; efiAssertVoid(getRemainingStack(chThdSelf()) > 16, "lowstck#9c"); /* Note, only in the ADC_COMPLETE state because the ADC driver fires * an intermediate callback when the buffer is half full. */ if (adcp->state == ADC_COMPLETE) { /* Calculates the average values from the ADC samples.*/ adcCallbackCounter_slow++; // newState.time = chimeNow(); for (int i = 0; i < slowAdc.size(); i++) { int value = getAvgAdcValue(i, slowAdcState.samples, ADC_GRP1_BUF_DEPTH_SLOW, slowAdc.size()); slowAdc.values.adc_data[i] = value; } } } static void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n) { (void) buffer; (void) n; // /* Note, only in the ADC_COMPLETE state because the ADC driver fires an // intermediate callback when the buffer is half full.*/ efiAssertVoid(getRemainingStack(chThdSelf()) > 16, "lowstck#9b"); if (adcp->state == ADC_COMPLETE) { fastAdcValue = getAvgAdcValue(0, samples_fast, ADC_GRP1_BUF_DEPTH_FAST, fastAdc.size()); fastAdc.values.adc_data[0] = fastAdcValue; #if EFI_MAP_AVERAGING mapAveragingCallback(fastAdcValue); #endif /* EFI_MAP_AVERAGING */ } } void initAdcInputs(bool boardTestMode) { initLoggingExt(&logger, "ADC", LOGGING_BUFFER, sizeof(LOGGING_BUFFER)); printMsg(&logger, "initAdcInputs()"); printStatus(); addConsoleActionI(ADC_DEBUG_KEY, &setAdcDebugReporting); #if EFI_INTERNAL_ADC /* * Initializes the ADC driver. */ adcStart(&ADC_SLOW_DEVICE, NULL); adcStart(&ADC_FAST_DEVICE, NULL); for (int adc = 0; adc < HW_MAX_ADC_INDEX; adc++) { adc_channel_mode_e mode = boardConfiguration->adcHwChannelEnabled[adc]; if (mode == ADC_SLOW) { slowAdc.addChannel((adc_channel_e) (ADC_CHANNEL_IN0 + adc)); } else if (mode == ADC_FAST) { fastAdc.addChannel((adc_channel_e) (ADC_CHANNEL_IN0 + adc)); } } slowAdc.init(); pwmStart(EFI_INTERNAL_SLOW_ADC_PWM, &pwmcfg_slow); if (boardConfiguration->isFastAdcEnabled || boardTestMode) { fastAdc.init(); /* * Initializes the PWM driver. */ pwmStart(EFI_INTERNAL_FAST_ADC_PWM, &pwmcfg_fast); } // ADC_CHANNEL_IN0 // PA0 // ADC_CHANNEL_IN1 // PA1 // ADC_CHANNEL_IN2 // PA2 // ADC_CHANNEL_IN3 // PA3 // ADC_CHANNEL_IN4 // PA4 // ADC_CHANNEL_IN5 // PA5 - this is also TIM2_CH1 // ADC_CHANNEL_IN6 // PA6 // ADC_CHANNEL_IN7 // PA7 // ADC_CHANNEL_IN8 // PB0 // ADC_CHANNEL_IN9 // PB1 // ADC_CHANNEL_IN10 // PC0 // ADC_CHANNEL_IN11 // PC1 // ADC_CHANNEL_IN12 // PC2 // ADC_CHANNEL_IN13 // PC3 // ADC_CHANNEL_IN14 // PC4 // ADC_CHANNEL_IN15 // PC5 //if(slowAdcChannelCount > ADC_MAX_SLOW_CHANNELS_COUNT) // todo: do we need this logic? do we need this check addConsoleActionI("adc", (VoidInt) printAdcValue); addConsoleAction("fadc", printFullAdcReport); #else printMsg(&logger, "ADC disabled"); #endif } void pokeAdcInputs() { if (!adcDebugReporting) return; printFullAdcReport(); }