/* * @file trigger_central.cpp * Here we have a bunch of higher-level methods which are not directly related to actual signal decoding * * @date Feb 23, 2014 * @author Andrey Belomutskiy, (c) 2012-2020 */ #include "global.h" #include "os_access.h" #include "trigger_central.h" #include "trigger_decoder.h" #include "main_trigger_callback.h" #include "engine_configuration.h" #include "listener_array.h" #include "data_buffer.h" #include "pwm_generator_logic.h" #include "tooth_logger.h" #include "settings.h" #include "engine_math.h" #include "local_version_holder.h" #include "trigger_simulator.h" #include "rpm_calculator.h" #include "perf_trace.h" #if EFI_PROD_CODE #include "pin_repository.h" #endif /* EFI_PROD_CODE */ #if EFI_TUNER_STUDIO #include "tunerstudio.h" #endif /* EFI_TUNER_STUDIO */ #if EFI_ENGINE_SNIFFER #include "engine_sniffer.h" WaveChart waveChart; #endif /* EFI_ENGINE_SNIFFER */ trigger_central_s::trigger_central_s() : hwEventCounters() { } TriggerCentral::TriggerCentral() : trigger_central_s() { clearCallbacks(&triggerListeneres); triggerState.resetTriggerState(); noiseFilter.resetAccumSignalData(); } void TriggerNoiseFilter::resetAccumSignalData() { memset(lastSignalTimes, 0xff, sizeof(lastSignalTimes)); // = -1 memset(accumSignalPeriods, 0, sizeof(accumSignalPeriods)); memset(accumSignalPrevPeriods, 0, sizeof(accumSignalPrevPeriods)); } int TriggerCentral::getHwEventCounter(int index) const { return hwEventCounters[index]; } #if EFI_SHAFT_POSITION_INPUT EXTERN_ENGINE; static Logging *logger; void TriggerCentral::addEventListener(ShaftPositionListener listener, const char *name, Engine *engine) { print("registerCkpListener: %s\r\n", name); triggerListeneres.registerCallback((VoidInt)(void*)listener, engine); } /** * @brief Adds a trigger event listener * * Trigger event listener would be invoked on each trigger event. For example, for a 60/2 wheel * that would be 116 events: 58 SHAFT_PRIMARY_RISING and 58 SHAFT_PRIMARY_FALLING events. */ void addTriggerEventListener(ShaftPositionListener listener, const char *name, Engine *engine) { engine->triggerCentral.addEventListener(listener, name, engine); } void hwHandleVvtCamSignal(trigger_value_e front, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX) { TriggerCentral *tc = &engine->triggerCentral; if (front == TV_RISE) { tc->vvtEventRiseCounter++; } else { tc->vvtEventFallCounter++; } addEngineSnifferEvent(PROTOCOL_VVT_NAME, front == TV_RISE ? PROTOCOL_ES_UP : PROTOCOL_ES_DOWN); if (CONFIG(vvtCamSensorUseRise) ^ (front != TV_FALL)) { return; } floatus_t oneDegreeUs = engine->rpmCalculator.oneDegreeUs; if (cisnan(oneDegreeUs)) { // we are here if we are getting VVT position signals while engine is not running // for example if crank position sensor is broken :) return; } tc->vvtCamCounter++; if (engineConfiguration->vvtMode == MIATA_NB2) { uint32_t currentDuration = nowNt - tc->previousVvtCamTime; float ratio = ((float) currentDuration) / tc->previousVvtCamDuration; tc->previousVvtCamDuration = currentDuration; tc->previousVvtCamTime = nowNt; if (engineConfiguration->verboseTriggerSynchDetails) { scheduleMsg(logger, "vvt ratio %.2f", ratio); } if (ratio < CONFIG(miataNb2VVTRatioFrom) || ratio > CONFIG(miataNb2VVTRatioTo)) { return; } if (engineConfiguration->verboseTriggerSynchDetails) { scheduleMsg(logger, "looks good: vvt ratio %.2f", ratio); } if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } efitick_t offsetNt = nowNt - tc->timeAtVirtualZeroNt; angle_t vvtPosition = NT2US(offsetNt) / oneDegreeUs; // convert engine cycle angle into trigger cycle angle vvtPosition -= tdcPosition(); fixAngle(vvtPosition, "vvtPosition", CUSTOM_ERR_6558); tc->vvtPosition = (engineConfiguration->vvtDisplayInverted ? -vvtPosition : vvtPosition) + engineConfiguration->vvtOffset; if (engineConfiguration->vvtMode == VVT_FIRST_HALF) { bool isEven = tc->triggerState.isEvenRevolution(); if (!isEven) { /** * we are here if we've detected the cam sensor within the wrong crank phase * let's increase the trigger event counter, that would adjust the state of * virtual crank-based trigger */ tc->triggerState.incrementTotalEventCounter(); if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } } else if (engineConfiguration->vvtMode == VVT_SECOND_HALF) { bool isEven = tc->triggerState.isEvenRevolution(); if (isEven) { // see above comment tc->triggerState.incrementTotalEventCounter(); if (engineConfiguration->debugMode == DBG_VVT) { #if EFI_TUNER_STUDIO tsOutputChannels.debugIntField1++; #endif /* EFI_TUNER_STUDIO */ } } } else if (engineConfiguration->vvtMode == MIATA_NB2) { /** * NB2 is a symmetrical crank, there are four phases total */ while (tc->triggerState.getTotalRevolutionCounter() % 4 != engineConfiguration->nbVvtIndex) { tc->triggerState.incrementTotalEventCounter(); } } } #if EFI_PROD_CODE || EFI_SIMULATOR int triggerReentraint = 0; int maxTriggerReentraint = 0; uint32_t triggerDuration; uint32_t triggerMaxDuration = 0; static bool isInsideTriggerHandler = false; void hwHandleShaftSignal(trigger_event_e signal, efitick_t timestamp) { ScopePerf perf(PE::HandleShaftSignal, static_cast(signal)); #if EFI_TOOTH_LOGGER // Log to the Tunerstudio tooth logger // We want to do this before anything else as we // actually want to capture any noise/jitter that may be occurring LogTriggerTooth(signal, timestamp); #endif /* EFI_TOOTH_LOGGER */ // for effective noise filtering, we need both signal edges, // so we pass them to handleShaftSignal() and defer this test if (!CONFIG(useNoiselessTriggerDecoder)) { if (!isUsefulSignal(signal PASS_CONFIG_PARAMETER_SUFFIX)) { return; } } uint32_t triggerHandlerEntryTime = getTimeNowLowerNt(); isInsideTriggerHandler = true; if (triggerReentraint > maxTriggerReentraint) maxTriggerReentraint = triggerReentraint; triggerReentraint++; efiAssertVoid(CUSTOM_ERR_6636, getCurrentRemainingStack() > 128, "lowstck#8"); engine->triggerCentral.handleShaftSignal(signal, timestamp PASS_ENGINE_PARAMETER_SUFFIX); triggerReentraint--; triggerDuration = getTimeNowLowerNt() - triggerHandlerEntryTime; isInsideTriggerHandler = false; if (triggerDuration > triggerMaxDuration) triggerMaxDuration = triggerDuration; } #endif /* EFI_PROD_CODE */ void TriggerCentral::resetCounters() { memset(hwEventCounters, 0, sizeof(hwEventCounters)); } static char shaft_signal_msg_index[15]; static const bool isUpEvent[6] = { false, true, false, true, false, true }; static const char *eventId[6] = { PROTOCOL_CRANK1, PROTOCOL_CRANK1, PROTOCOL_CRANK2, PROTOCOL_CRANK2, PROTOCOL_CRANK3, PROTOCOL_CRANK3 }; static ALWAYS_INLINE void reportEventToWaveChart(trigger_event_e ckpSignalType, int index DECLARE_ENGINE_PARAMETER_SUFFIX) { if (!ENGINE(isEngineChartEnabled)) { // this is here just as a shortcut so that we avoid engine sniffer as soon as possible return; // engineSnifferRpmThreshold is accounted for inside ENGINE(isEngineChartEnabled) } itoa10(&shaft_signal_msg_index[2], index); bool isUp = isUpEvent[(int) ckpSignalType]; shaft_signal_msg_index[0] = isUp ? 'u' : 'd'; addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); if (engineConfiguration->useOnlyRisingEdgeForTrigger) { // let's add the opposite event right away shaft_signal_msg_index[0] = isUp ? 'd' : 'u'; addEngineSnifferEvent(eventId[(int )ckpSignalType], (char* ) shaft_signal_msg_index); } } /** * This is used to filter noise spikes (interference) in trigger signal. See * The basic idea is to use not just edges, but the average amount of time the signal stays in '0' or '1'. * So we update 'accumulated periods' to track where the signal is. * And then compare between the current period and previous, with some tolerance (allowing for the wheel speed change). * @return true if the signal is passed through. */ bool TriggerNoiseFilter::noiseFilter(efitick_t nowNt, TriggerState * triggerState, trigger_event_e signal DECLARE_ENGINE_PARAMETER_SUFFIX) { // todo: find a better place for these defs static const trigger_event_e opposite[6] = { SHAFT_PRIMARY_RISING, SHAFT_PRIMARY_FALLING, SHAFT_SECONDARY_RISING, SHAFT_SECONDARY_FALLING, SHAFT_3RD_RISING, SHAFT_3RD_FALLING }; static const trigger_wheel_e triggerIdx[6] = { T_PRIMARY, T_PRIMARY, T_SECONDARY, T_SECONDARY, T_CHANNEL_3, T_CHANNEL_3 }; // we process all trigger channels independently trigger_wheel_e ti = triggerIdx[signal]; // falling is opposite to rising, and vise versa trigger_event_e os = opposite[signal]; // todo: currently only primary channel is filtered, because there are some weird trigger types on other channels if (ti != T_PRIMARY) return true; // update period accumulator: for rising signal, we update '0' accumulator, and for falling - '1' if (lastSignalTimes[signal] != -1) accumSignalPeriods[signal] += nowNt - lastSignalTimes[signal]; // save current time for this trigger channel lastSignalTimes[signal] = nowNt; // now we want to compare current accumulated period to the stored one efitick_t currentPeriod = accumSignalPeriods[signal]; // the trick is to compare between different efitick_t allowedPeriod = accumSignalPrevPeriods[os]; // but first check if we're expecting a gap bool isGapExpected = TRIGGER_WAVEFORM(isSynchronizationNeeded) && triggerState->shaft_is_synchronized && (triggerState->currentCycle.eventCount[ti] + 1) == TRIGGER_WAVEFORM(expectedEventCount[ti]); if (isGapExpected) { // usually we need to extend the period for gaps, based on the trigger info allowedPeriod *= TRIGGER_WAVEFORM(syncRatioAvg); } // also we need some margin for rapidly changing trigger-wheel speed, // that's why we expect the period to be no less than 2/3 of the previous period (this is just an empirical 'magic' coef.) efitick_t minAllowedPeriod = 2 * allowedPeriod / 3; // but no longer than 5/4 of the previous 'normal' period efitick_t maxAllowedPeriod = 5 * allowedPeriod / 4; // above all, check if the signal comes not too early if (currentPeriod >= minAllowedPeriod) { // now we store this period as a reference for the next time, // BUT we store only 'normal' periods, and ignore too long periods (i.e. gaps) if (!isGapExpected && (maxAllowedPeriod == 0 || currentPeriod <= maxAllowedPeriod)) { accumSignalPrevPeriods[signal] = currentPeriod; } // reset accumulator accumSignalPeriods[signal] = 0; return true; } // all premature or extra-long events are ignored - treated as interference return false; } void TriggerCentral::handleShaftSignal(trigger_event_e signal, efitick_t timestamp DECLARE_ENGINE_PARAMETER_SUFFIX) { efiAssertVoid(CUSTOM_CONF_NULL, engine!=NULL, "configuration"); if (triggerShape.shapeDefinitionError) { // trigger is broken, we cannot do anything here warning(CUSTOM_ERR_UNEXPECTED_SHAFT_EVENT, "Shaft event while trigger is mis-configured"); // magic value to indicate a problem hwEventCounters[0] = 155; return; } // This code gathers some statistics on signals and compares accumulated periods to filter interference if (CONFIG(useNoiselessTriggerDecoder)) { if (!noiseFilter.noiseFilter(timestamp, &triggerState, signal PASS_ENGINE_PARAMETER_SUFFIX)) { return; } // moved here from hwHandleShaftSignal() if (!isUsefulSignal(signal PASS_CONFIG_PARAMETER_SUFFIX)) { return; } } engine->onTriggerSignalEvent(timestamp); int eventIndex = (int) signal; efiAssertVoid(CUSTOM_TRIGGER_EVENT_TYPE, eventIndex >= 0 && eventIndex < HW_EVENT_TYPES, "signal type"); hwEventCounters[eventIndex]++; /** * This invocation changes the state of triggerState */ triggerState.decodeTriggerEvent(&ENGINE(triggerCentral.triggerShape), nullptr, engine, signal, timestamp PASS_CONFIG_PARAMETER_SUFFIX); /** * If we only have a crank position sensor with four stroke, here we are extending crank revolutions with a 360 degree * cycle into a four stroke, 720 degrees cycle. */ int triggerIndexForListeners; operation_mode_e operationMode = engine->getOperationMode(PASS_ENGINE_PARAMETER_SIGNATURE); if (operationMode == FOUR_STROKE_CAM_SENSOR || operationMode == TWO_STROKE) { // That's easy - trigger cycle matches engine cycle triggerIndexForListeners = triggerState.getCurrentIndex(); } else { int crankDivider = operationMode == FOUR_STROKE_CRANK_SENSOR ? 2 : 4; int crankInternalIndex = triggerState.getTotalRevolutionCounter() % crankDivider; triggerIndexForListeners = triggerState.getCurrentIndex() + (crankInternalIndex * getTriggerSize()); } if (triggerIndexForListeners == 0) { timeAtVirtualZeroNt = timestamp; } reportEventToWaveChart(signal, triggerIndexForListeners PASS_ENGINE_PARAMETER_SUFFIX); if (!triggerState.shaft_is_synchronized) { // we should not propagate event if we do not know where we are return; } if (triggerState.isValidIndex(&ENGINE(triggerCentral.triggerShape))) { ScopePerf perf(PE::ShaftPositionListeners); #if TRIGGER_EXTREME_LOGGING scheduleMsg(logger, "trigger %d %d %d", triggerIndexForListeners, getRevolutionCounter(), (int)getTimeNowUs()); #endif /* FUEL_MATH_EXTREME_LOGGING */ /** * Here we invoke all the listeners - the main engine control logic is inside these listeners */ for (int i = 0; i < triggerListeneres.currentListenersCount; i++) { ShaftPositionListener listener = (ShaftPositionListener) (void*) triggerListeneres.callbacks[i]; (listener)(signal, triggerIndexForListeners, timestamp PASS_ENGINE_PARAMETER_SUFFIX); } } } EXTERN_ENGINE ; static void triggerShapeInfo(void) { #if EFI_PROD_CODE || EFI_SIMULATOR TriggerWaveform *s = &engine->triggerCentral.triggerShape; scheduleMsg(logger, "useRise=%s", boolToString(TRIGGER_WAVEFORM(useRiseEdge))); scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0])); for (int i = 0; i < s->getSize(); i++) { scheduleMsg(logger, "event %d %.2f", i, s->eventAngles[i]); } #endif } #if EFI_UNIT_TEST #include #define TRIGGERS_FILE_NAME "triggers.txt" /** * This is used to generate trigger info which is later used by TriggerImage java class * to generate images for documentation */ extern bool printTriggerDebug; void printAllTriggers() { FILE * fp = fopen (TRIGGERS_FILE_NAME, "w+"); fprintf(fp, "# Generated by rusEfi unit test suite\n"); fprintf(fp, "# This file is used by TriggerImage tool\n"); fprintf(fp, "# See 'gen_trigger_images.bat'\n"); //printTriggerDebug = true; for (int triggerId = 1; triggerId < TT_UNUSED; triggerId++) { trigger_type_e tt = (trigger_type_e) triggerId; printf("Exporting %s\r\n", getTrigger_type_e(tt)); persistent_config_s pc; Engine e(&pc); Engine *engine = &e; persistent_config_s *config = &pc; engine_configuration_s *engineConfiguration = &pc.engineConfiguration; engineConfiguration->trigger.type = tt; engineConfiguration->ambiguousOperationMode = FOUR_STROKE_CAM_SENSOR; TriggerWaveform *s = &engine->triggerCentral.triggerShape; engine->initializeTriggerWaveform(NULL PASS_ENGINE_PARAMETER_SUFFIX); if (s->shapeDefinitionError) { printf("Trigger error %d\r\n", triggerId); exit(-1); } fprintf(fp, "TRIGGERTYPE %d %d %s %.2f\n", triggerId, s->getLength(), getTrigger_type_e(tt), s->tdcPosition); fprintf(fp, "# duty %.2f %.2f\n", s->expectedDutyCycle[0], s->expectedDutyCycle[1]); for (int i = 0; i < s->getLength(); i++) { int triggerDefinitionCoordinate = (s->getTriggerWaveformSynchPointIndex() + i) % s->getSize(); fprintf(fp, "event %d %d %.2f\n", i, s->triggerSignals[triggerDefinitionCoordinate], s->eventAngles[i]); } } fclose(fp); printf("All triggers exported to %s\n", TRIGGERS_FILE_NAME); } #endif #if EFI_PROD_CODE extern PwmConfig triggerSignal; #endif /* #if EFI_PROD_CODE */ extern uint32_t hipLastExecutionCount; extern uint32_t hwSetTimerDuration; extern uint32_t maxLockedDuration; extern uint32_t maxEventCallbackDuration; extern int perSecondIrqDuration; extern int perSecondIrqCounter; #if EFI_PROD_CODE extern uint32_t maxPrecisionCallbackDuration; #endif /* EFI_PROD_CODE */ extern uint32_t maxSchedulingPrecisionLoss; extern uint32_t *cyccnt; void resetMaxValues() { #if EFI_PROD_CODE || EFI_SIMULATOR maxEventCallbackDuration = triggerMaxDuration = 0; #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ maxSchedulingPrecisionLoss = 0; #if EFI_CLOCK_LOCKS maxLockedDuration = 0; #endif /* EFI_CLOCK_LOCKS */ #if EFI_PROD_CODE maxPrecisionCallbackDuration = 0; #endif /* EFI_PROD_CODE */ } #if HAL_USE_ICU == TRUE extern int icuWidthCallbackCounter; extern int icuWidthPeriodCounter; #endif /* HAL_USE_ICU */ void triggerInfo(void) { #if EFI_PROD_CODE || EFI_SIMULATOR TriggerWaveform *ts = &engine->triggerCentral.triggerShape; #if (HAL_TRIGGER_USE_PAL == TRUE) && (PAL_USE_CALLBACKS == TRUE) scheduleMsg(logger, "trigger PAL mode %d", engine->hwTriggerInputEnabled); #else #if HAL_USE_ICU == TRUE scheduleMsg(logger, "trigger ICU hw: %d %d %d", icuWidthCallbackCounter, icuWidthPeriodCounter, engine->hwTriggerInputEnabled); #endif /* HAL_USE_ICU */ #endif /* HAL_TRIGGER_USE_PAL */ scheduleMsg(logger, "Template %s (%d) trigger %s (%d) useRiseEdge=%s onlyFront=%s useOnlyFirstChannel=%s tdcOffset=%.2f", getConfigurationName(engineConfiguration->engineType), engineConfiguration->engineType, getTrigger_type_e(engineConfiguration->trigger.type), engineConfiguration->trigger.type, boolToString(TRIGGER_WAVEFORM(useRiseEdge)), boolToString(engineConfiguration->useOnlyRisingEdgeForTrigger), boolToString(engineConfiguration->trigger.useOnlyFirstChannel), TRIGGER_WAVEFORM(tdcPosition)); if (engineConfiguration->trigger.type == TT_TOOTHED_WHEEL) { scheduleMsg(logger, "total %d/skipped %d", engineConfiguration->trigger.customTotalToothCount, engineConfiguration->trigger.customSkippedToothCount); } scheduleMsg(logger, "trigger#1 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(0), engine->triggerCentral.getHwEventCounter(1)); if (ts->needSecondTriggerInput) { scheduleMsg(logger, "trigger#2 event counters up=%d/down=%d", engine->triggerCentral.getHwEventCounter(2), engine->triggerCentral.getHwEventCounter(3)); } scheduleMsg(logger, "expected cycle events %d/%d/%d", TRIGGER_WAVEFORM(expectedEventCount[0]), TRIGGER_WAVEFORM(expectedEventCount[1]), TRIGGER_WAVEFORM(expectedEventCount[2])); scheduleMsg(logger, "trigger type=%d/need2ndChannel=%s", engineConfiguration->trigger.type, boolToString(TRIGGER_WAVEFORM(needSecondTriggerInput))); scheduleMsg(logger, "expected duty #0=%.2f/#1=%.2f", TRIGGER_WAVEFORM(expectedDutyCycle[0]), TRIGGER_WAVEFORM(expectedDutyCycle[1])); scheduleMsg(logger, "synchronizationNeeded=%s/isError=%s/total errors=%d ord_err=%d/total revolutions=%d/self=%s", boolToString(ts->isSynchronizationNeeded), boolToString(isTriggerDecoderError()), engine->triggerCentral.triggerState.totalTriggerErrorCounter, engine->triggerCentral.triggerState.orderingErrorCounter, engine->triggerCentral.triggerState.getTotalRevolutionCounter(), boolToString(engineConfiguration->directSelfStimulation)); if (TRIGGER_WAVEFORM(isSynchronizationNeeded)) { scheduleMsg(logger, "gap from %.2f to %.2f", TRIGGER_WAVEFORM(syncronizationRatioFrom[0]), TRIGGER_WAVEFORM(syncronizationRatioTo[0])); } #endif /* EFI_PROD_CODE || EFI_SIMULATOR */ #if EFI_PROD_CODE if (HAVE_CAM_INPUT()) { scheduleMsg(logger, "VVT input: %s mode %s", hwPortname(engineConfiguration->camInputs[0]), getVvt_mode_e(engineConfiguration->vvtMode)); scheduleMsg(logger, "VVT event counters: %d/%d", engine->triggerCentral.vvtEventRiseCounter, engine->triggerCentral.vvtEventFallCounter); } scheduleMsg(logger, "primary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[0])); scheduleMsg(logger, "primary trigger simulator: %s %s freq=%d", hwPortname(CONFIG(triggerSimulatorPins)[0]), getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[0]), CONFIG(triggerSimulatorFrequency)); if (ts->needSecondTriggerInput) { scheduleMsg(logger, "secondary trigger input: %s", hwPortname(CONFIG(triggerInputPins)[1])); #if EFI_EMULATE_POSITION_SENSORS scheduleMsg(logger, "secondary trigger simulator: %s %s phase=%d", hwPortname(CONFIG(triggerSimulatorPins)[1]), getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[1]), triggerSignal.safe.phaseIndex); #endif /* EFI_EMULATE_POSITION_SENSORS */ } // scheduleMsg(logger, "3rd trigger simulator: %s %s", hwPortname(CONFIG(triggerSimulatorPins)[2]), // getPin_output_mode_e(CONFIG(triggerSimulatorPinModes)[2])); scheduleMsg(logger, "trigger error extra LED: %s %s", hwPortname(CONFIG(triggerErrorPin)), getPin_output_mode_e(CONFIG(triggerErrorPinMode))); scheduleMsg(logger, "primary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[0])); scheduleMsg(logger, "secondary logic input: %s", hwPortname(CONFIG(logicAnalyzerPins)[1])); scheduleMsg(logger, "zeroTestTime=%d maxSchedulingPrecisionLoss=%d", engine->m.zeroTestTime, maxSchedulingPrecisionLoss); scheduleMsg(logger, "advanceLookupTime=%d now=%d fuelCalcTime=%d", engine->m.advanceLookupTime, *cyccnt, engine->m.fuelCalcTime); scheduleMsg(logger, "ignitionSchTime=%d injectonSchTime=%d", engine->m.ignitionSchTime, engine->m.injectonSchTime); scheduleMsg(logger, "mapTime=%d/hipTime=%d/rpmTime=%d/mainTriggerCallbackTime=%d", engine->m.mapAveragingCbTime, engine->m.hipCbTime, engine->m.rpmCbTime, engine->m.mainTriggerCallbackTime); #if EFI_CLOCK_LOCKS scheduleMsg(logger, "maxLockedDuration=%d / maxTriggerReentraint=%d", maxLockedDuration, maxTriggerReentraint); scheduleMsg(logger, "perSecondIrqDuration=%d ticks / perSecondIrqCounter=%d", perSecondIrqDuration, perSecondIrqCounter); scheduleMsg(logger, "IRQ CPU utilization %f%%", perSecondIrqDuration / (float)CORE_CLOCK * 100); #endif /* EFI_CLOCK_LOCKS */ scheduleMsg(logger, "maxEventCallbackDuration=%d", maxEventCallbackDuration); #if EFI_HIP_9011 scheduleMsg(logger, "hipLastExecutionCount=%d", hipLastExecutionCount); #endif /* EFI_HIP_9011 */ scheduleMsg(logger, "hwSetTimerDuration=%d", hwSetTimerDuration); scheduleMsg(logger, "totalTriggerHandlerMaxTime=%d", triggerMaxDuration); scheduleMsg(logger, "maxPrecisionCallbackDuration=%d", maxPrecisionCallbackDuration); resetMaxValues(); #endif /* EFI_PROD_CODE */ } static void resetRunningTriggerCounters() { #if !EFI_UNIT_TEST engine->triggerCentral.resetCounters(); triggerInfo(); #endif } void onConfigurationChangeTriggerCallback(DECLARE_ENGINE_PARAMETER_SIGNATURE) { bool changed = false; for (int i = 0; i < CAM_INPUTS_COUNT; i++) { changed |= isConfigurationChanged(camInputs[i]); } changed |= isConfigurationChanged(trigger.type) || isConfigurationChanged(ambiguousOperationMode) || isConfigurationChanged(useOnlyRisingEdgeForTrigger) || isConfigurationChanged(globalTriggerAngleOffset) || isConfigurationChanged(trigger.customTotalToothCount) || isConfigurationChanged(trigger.customSkippedToothCount) || isConfigurationChanged(triggerInputPins[0]) || isConfigurationChanged(triggerInputPins[1]) || isConfigurationChanged(triggerInputPins[2]) || isConfigurationChanged(vvtMode) || isConfigurationChanged(vvtCamSensorUseRise) || isConfigurationChanged(vvtOffset) || isConfigurationChanged(vvtDisplayInverted) || isConfigurationChanged(miataNb2VVTRatioFrom) || isConfigurationChanged(miataNb2VVTRatioTo) || isConfigurationChanged(nbVvtIndex); if (changed) { assertEngineReference(); #if EFI_ENGINE_CONTROL ENGINE(initializeTriggerWaveform(logger PASS_ENGINE_PARAMETER_SUFFIX)); engine->triggerCentral.noiseFilter.resetAccumSignalData(); #endif } #if EFI_DEFAILED_LOGGING scheduleMsg(logger, "isTriggerConfigChanged=%d", engine->isTriggerConfigChanged); #endif /* EFI_DEFAILED_LOGGING */ // we do not want to miss two updates in a row engine->isTriggerConfigChanged = engine->isTriggerConfigChanged || changed; } /** * @returns true if configuration just changed, and if that change has affected trigger */ bool checkIfTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) { bool result = engine->triggerVersion.isOld(engine->getGlobalConfigurationVersion()) && engine->isTriggerConfigChanged; engine->isTriggerConfigChanged = false; // whoever has called the method is supposed to react to changes return result; } bool isTriggerConfigChanged(DECLARE_ENGINE_PARAMETER_SIGNATURE) { return engine->isTriggerConfigChanged; } void initTriggerCentral(Logging *sharedLogger) { logger = sharedLogger; strcpy((char*) shaft_signal_msg_index, "x_"); #if EFI_ENGINE_SNIFFER initWaveChart(&waveChart); #endif /* EFI_ENGINE_SNIFFER */ #if EFI_PROD_CODE || EFI_SIMULATOR addConsoleAction(CMD_TRIGGERINFO, triggerInfo); addConsoleAction("trigger_shape_info", triggerShapeInfo); addConsoleAction("reset_trigger", resetRunningTriggerCounters); #endif } #endif