rusefi-full/firmware/controllers/trigger/trigger_decoder.h

200 lines
5.9 KiB
C++

/**
* @file trigger_decoder.h
*
* @date Dec 24, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include "global.h"
#include "trigger_structure.h"
#include "engine_configuration.h"
#include "trigger_state_generated.h"
class TriggerState;
struct TriggerStateListener {
#if EFI_SHAFT_POSITION_INPUT
virtual void OnTriggerStateProperState(efitick_t nowNt) = 0;
virtual void OnTriggerSyncronization(bool wasSynchronized) = 0;
virtual void OnTriggerInvalidIndex(int currentIndex) = 0;
virtual void OnTriggerSynchronizationLost() = 0;
#endif // EFI_SHAFT_POSITION_INPUT
};
class TriggerConfiguration {
public:
virtual bool isUseOnlyRisingEdgeForTrigger() const = 0;
virtual bool isSilentTriggerError() const = 0;
virtual bool isVerboseTriggerSynchDetails() const = 0;
virtual const char * getPrintPrefix() const = 0;
virtual debug_mode_e getDebugMode() const = 0;
virtual trigger_type_e getType() const = 0;
};
typedef void (*TriggerStateCallback)(TriggerState *);
typedef struct {
/**
* index within trigger revolution, from 0 to trigger event count
*/
uint32_t current_index;
/**
* Number of actual events of each channel within current trigger cycle, these
* values are used to detect trigger signal errors.
* see TriggerWaveform
*/
uint32_t eventCount[PWM_PHASE_MAX_WAVE_PER_PWM];
/**
* This array is used to calculate duty cycle of each trigger channel.
* Current implementation is a bit funny - it does not really consider if an event
* is a rise or a fall, it works based on the event order within synchronization cycle.
*
* 32 bit value is good enough here, overflows will happen but they would work just fine.
*/
uint32_t timeOfPreviousEventNt[PWM_PHASE_MAX_WAVE_PER_PWM];
/**
* Here we accumulate the amount of time this signal was ON within current trigger cycle
*/
uint32_t totalTimeNt[PWM_PHASE_MAX_WAVE_PER_PWM];
} current_cycle_state_s;
/**
* @see TriggerWaveform for trigger wheel shape definition
*/
class TriggerState : public trigger_state_s {
public:
TriggerState();
/**
* current trigger processing index, between zero and #size
*/
int getCurrentIndex() const;
int getTotalRevolutionCounter() const;
/**
* this is important for crank-based virtual trigger and VVT magic
*/
bool isEvenRevolution() const;
void incrementTotalEventCounter();
efitime_t getTotalEventCounter() const;
void decodeTriggerEvent(
const TriggerWaveform *triggerShape,
const TriggerStateCallback triggerCycleCallback,
TriggerStateListener * triggerStateListener,
const TriggerConfiguration * triggerConfiguration,
const trigger_event_e signal,
const efitime_t nowUs);
bool validateEventCounters(TriggerWaveform *triggerShape) const;
void onShaftSynchronization(
const TriggerStateCallback triggerCycleCallback,
const efitick_t nowNt,
const TriggerWaveform *triggerShape);
bool isValidIndex(const TriggerWaveform *triggerShape) const;
/**
* TRUE if we know where we are
*/
bool shaft_is_synchronized;
efitick_t mostRecentSyncTime;
volatile efitick_t previousShaftEventTimeNt;
void setTriggerErrorState();
efitick_t lastDecodingErrorTime;
// the boolean flag is a performance optimization so that complex comparison is avoided if no error
bool someSortOfTriggerError;
/**
* current duration at index zero and previous durations are following
*/
uint32_t toothDurations[GAP_TRACKING_LENGTH + 1];
efitick_t toothed_previous_time;
current_cycle_state_s currentCycle;
int expectedTotalTime[PWM_PHASE_MAX_WAVE_PER_PWM];
/**
* how many times since ECU reboot we had unexpected number of teeth in trigger cycle
*/
uint32_t totalTriggerErrorCounter;
uint32_t orderingErrorCounter;
void resetTriggerState();
void setShaftSynchronized(bool value);
/**
* this is start of real trigger cycle
* for virtual double trigger see timeAtVirtualZeroNt
*/
efitick_t startOfCycleNt;
uint32_t findTriggerZeroEventIndex(TriggerWaveform * shape,
const TriggerConfiguration * triggerConfiguration,
trigger_config_s const*triggerConfig
);
private:
void resetCurrentCycleState();
trigger_event_e curSignal;
trigger_event_e prevSignal;
int64_t totalEventCountBase;
uint32_t totalRevolutionCounter;
bool isFirstEvent;
};
// we only need 90 degrees of events so /4 or maybe even /8 should work?
#define PRE_SYNC_EVENTS (PWM_PHASE_MAX_COUNT / 4)
/**
* the reason for sub-class is simply to save RAM but not having statistics in the trigger initialization instance
*/
class TriggerStateWithRunningStatistics : public TriggerState {
public:
TriggerStateWithRunningStatistics();
float instantRpm = 0;
/**
* timestamp of each trigger wheel tooth
*/
uint32_t timeOfLastEvent[PWM_PHASE_MAX_COUNT];
int spinningEventIndex = 0;
// todo: change the implementation to reuse 'timeOfLastEvent'
uint32_t spinningEvents[PRE_SYNC_EVENTS];
/**
* instant RPM calculated at this trigger wheel tooth
*/
float instantRpmValue[PWM_PHASE_MAX_COUNT];
/**
* Stores last non-zero instant RPM value to fix early instability
*/
float prevInstantRpmValue = 0;
void movePreSynchTimestamps(DECLARE_ENGINE_PARAMETER_SIGNATURE);
float calculateInstantRpm(TriggerFormDetails *triggerFormDetails, int *prevIndex, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX);
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
void runtimeStatistics(TriggerFormDetails *triggerFormDetails, efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX);
#endif
/**
* Update timeOfLastEvent[] on every trigger event - even without synchronization
* Needed for early spin-up RPM detection.
*/
void setLastEventTimeForInstantRpm(efitick_t nowNt DECLARE_ENGINE_PARAMETER_SUFFIX);
};
angle_t getEngineCycle(operation_mode_e operationMode);
class Engine;
void initTriggerDecoderLogger(Logging *sharedLogger);
void calculateTriggerSynchPoint(TriggerWaveform *shape,
TriggerState *state DECLARE_ENGINE_PARAMETER_SUFFIX);
void prepareEventAngles(TriggerWaveform *shape, TriggerFormDetails *details DECLARE_ENGINE_PARAMETER_SUFFIX);