rusefi-full/firmware/controllers/math/speed_density.cpp

151 lines
5.1 KiB
C++

/**
* @file speed_density.cpp
*
* See http://rusefi.com/wiki/index.php?title=Manual:Software:Fuel_Control#Speed_Density for details
*
* @date May 29, 2014
* @author Andrey Belomutskiy, (c) 2012-2017
*/
#include "main.h"
#include "speed_density.h"
#include "interpolation.h"
#include "rpm_calculator.h"
#include "engine_math.h"
#include "engine_state.h"
#define rpmMin 500
#define rpmMax 8000
EXTERN_ENGINE;
fuel_Map3D_t veMap("VE");
fuel_Map3D_t ve2Map("VE2");
afr_Map3D_t afrMap("AFR", 1.0 / AFR_STORAGE_MULT);
baroCorr_Map3D_t baroCorrMap("baro");
#define tpMin 0
#define tpMax 100
// http://rusefi.com/math/t_charge.html
float getTCharge(int rpm, float tps, float coolantTemp, float airTemp DECLARE_ENGINE_PARAMETER_SUFFIX) {
if (cisnan(coolantTemp) || cisnan(airTemp)) {
warning(CUSTOM_ERR_6147, "t-getTCharge NaN");
return coolantTemp;
}
float minRpmKcurrentTPS = interpolate(tpMin, engineConfiguration->tChargeMinRpmMinTps, tpMax,
engineConfiguration->tChargeMinRpmMaxTps, tps);
float maxRpmKcurrentTPS = interpolate(tpMin, engineConfiguration->tChargeMaxRpmMinTps, tpMax,
engineConfiguration->tChargeMaxRpmMaxTps, tps);
float Tcharge_coff = interpolate(rpmMin, minRpmKcurrentTPS, rpmMax, maxRpmKcurrentTPS, rpm);
if (cisnan(Tcharge_coff)) {
warning(CUSTOM_ERR_6148, "t2-getTCharge NaN");
return coolantTemp;
}
float Tcharge = coolantTemp * (1 - Tcharge_coff) + airTemp * Tcharge_coff;
if (cisnan(Tcharge)) {
// we can probably end up here while resetting engine state - interpolation would fail
warning(CUSTOM_ERR_TCHARGE_NOT_READY, "getTCharge NaN");
return coolantTemp;
}
return Tcharge;
}
/**
* is J/g*K
*/
#define GAS_R 0.28705
float getCycleAirMass(engine_configuration_s *engineConfiguration, float VE, float MAP, float tempK) {
// todo: pre-calculate cylinder displacement to save one division
float cylinderDisplacement = engineConfiguration->specs.displacement;
return (cylinderDisplacement * VE * MAP) / (GAS_R * tempK);
}
float getCylinderAirMass(engine_configuration_s *engineConfiguration, float VE, float MAP, float tempK) {
return getCycleAirMass(engineConfiguration, VE, MAP, tempK) / engineConfiguration->specs.cylindersCount;
}
/**
* @return per cylinder injection time, in seconds
*/
float sdMath(engine_configuration_s *engineConfiguration, float airMass, float AFR) {
/**
* todo: pre-calculate gramm/second injector flow to save one multiplication
* open question if that's needed since that's just a multiplication
*/
float injectorFlowRate = cc_minute_to_gramm_second(engineConfiguration->injector.flow);
/**
* injection_pulse_duration = fuel_mass / injector_flow
* fuel_mass = air_mass / target_afr
*
* injection_pulse_duration = (air_mass / target_afr) / injector_flow
*/
return airMass / (AFR * injectorFlowRate);
}
EXTERN_ENGINE;
/**
* @return per cylinder injection time, in Milliseconds
*/
floatms_t getSpeedDensityFuel(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
/**
* most of the values are pre-calculated for performance reasons
*/
float tChargeK = ENGINE(engineState.tChargeK);
if (cisnan(tChargeK)) {
warning(CUSTOM_ERR_TCHARGE_NOT_READY2, "tChargeK not ready"); // this would happen before we have CLT reading for example
return 0;
}
float map = getMap();
efiAssert(!cisnan(map), "NaN map", 0);
float adjustedMap = map + engine->engineLoadAccelEnrichment.getEngineLoadEnrichment(PASS_ENGINE_PARAMETER_SIGNATURE);
efiAssert(!cisnan(adjustedMap), "NaN adjustedMap", 0);
float airMass = getCylinderAirMass(engineConfiguration, ENGINE(engineState.currentVE), adjustedMap, tChargeK);
efiAssert(!cisnan(airMass), "NaN airMass", 0);
#if EFI_PRINTF_FUEL_DETAILS || defined(__DOXYGEN__)
printf("map=%f adjustedMap=%f airMass=%f\t\n",
map, adjustedMap, engine->engineState.airMass);
#endif /*EFI_PRINTF_FUEL_DETAILS */
engine->engineState.airMass = airMass;
return sdMath(engineConfiguration, airMass, ENGINE(engineState.targetAFR)) * 1000;
}
static const baro_corr_table_t default_baro_corr = {
{1.141, 1.086, 1.039, 1},
{1.141, 1.086, 1.039, 1},
{1.141, 1.086, 1.039, 1},
{1.141, 1.086, 1.039, 1}
};
void setDefaultVETable(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
setRpmTableBin(config->veRpmBins, FUEL_RPM_COUNT);
veMap.setAll(80);
// setRpmTableBin(engineConfiguration->ve2RpmBins, FUEL_RPM_COUNT);
// setTableBin2(engineConfiguration->ve2LoadBins, FUEL_LOAD_COUNT, 10, 300, 1);
// ve2Map.setAll(0.81);
setRpmTableBin(config->afrRpmBins, FUEL_RPM_COUNT);
afrMap.setAll(14.7);
setRpmTableBin(engineConfiguration->baroCorrRpmBins, BARO_CORR_SIZE);
setTableBin2(engineConfiguration->baroCorrPressureBins, BARO_CORR_SIZE, 75, 105, 1);
memcpy(engineConfiguration->baroCorrTable, default_baro_corr, sizeof(default_baro_corr));
}
void initSpeedDensity(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
veMap.init(config->veTable, config->veLoadBins, config->veRpmBins);
// ve2Map.init(engineConfiguration->ve2Table, engineConfiguration->ve2LoadBins, engineConfiguration->ve2RpmBins);
afrMap.init(config->afrTable, config->afrLoadBins, config->afrRpmBins);
baroCorrMap.init(engineConfiguration->baroCorrTable, engineConfiguration->baroCorrPressureBins, engineConfiguration->baroCorrRpmBins);
}