383 lines
11 KiB
C++
383 lines
11 KiB
C++
/**
|
|
* @file pwm_generator_logic.cpp
|
|
*
|
|
* This PWM implementation keep track of when it would be the next time to toggle the signal.
|
|
* It constantly sets timer to that next toggle time, then sets the timer again from the callback, and so on.
|
|
*
|
|
* @date Mar 2, 2014
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
#include "os_access.h"
|
|
|
|
#if EFI_PROD_CODE
|
|
#include "mpu_util.h"
|
|
#endif // EFI_PROD_CODE
|
|
|
|
// 1% duty cycle
|
|
#define ZERO_PWM_THRESHOLD 0.01
|
|
|
|
SimplePwm::SimplePwm()
|
|
{
|
|
seq.waveCount = 1;
|
|
seq.phaseCount = 2;
|
|
}
|
|
|
|
SimplePwm::SimplePwm(const char *name) : SimplePwm() {
|
|
this->name = name;
|
|
}
|
|
|
|
PwmConfig::PwmConfig() {
|
|
memset((void*)&scheduling, 0, sizeof(scheduling));
|
|
memset((void*)&safe, 0, sizeof(safe));
|
|
dbgNestingLevel = 0;
|
|
periodNt = NAN;
|
|
mode = PM_NORMAL;
|
|
memset(&outputPins, 0, sizeof(outputPins));
|
|
pwmCycleCallback = nullptr;
|
|
stateChangeCallback = nullptr;
|
|
executor = nullptr;
|
|
name = "[noname]";
|
|
arg = this;
|
|
}
|
|
|
|
/**
|
|
* This method allows you to change duty cycle on the fly
|
|
* @param dutyCycle value between 0 and 1
|
|
* See also setFrequency
|
|
*/
|
|
void SimplePwm::setSimplePwmDutyCycle(float dutyCycle) {
|
|
if (isStopRequested) {
|
|
// we are here in order to not change pin once PWM stop was requested
|
|
return;
|
|
}
|
|
if (cisnan(dutyCycle)) {
|
|
warning(CUSTOM_DUTY_INVALID, "%s spwd:dutyCycle %.2f", name, dutyCycle);
|
|
return;
|
|
} else if (dutyCycle < 0) {
|
|
warning(CUSTOM_DUTY_TOO_LOW, "%s dutyCycle too low %.2f", name, dutyCycle);
|
|
dutyCycle = 0;
|
|
} else if (dutyCycle > 1) {
|
|
warning(CUSTOM_PWM_DUTY_TOO_HIGH, "%s duty too high %.2f", name, dutyCycle);
|
|
dutyCycle = 1;
|
|
}
|
|
|
|
#if EFI_PROD_CODE
|
|
if (hardPwm) {
|
|
hardPwm->setDuty(dutyCycle);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
// Handle zero and full duty cycle. This will cause the PWM output to behave like a plain digital output.
|
|
if (dutyCycle == 0.0f && stateChangeCallback) {
|
|
// Manually fire falling edge
|
|
stateChangeCallback(0, arg);
|
|
} else if (dutyCycle == 1.0f && stateChangeCallback) {
|
|
// Manually fire rising edge
|
|
stateChangeCallback(1, arg);
|
|
}
|
|
|
|
if (dutyCycle < ZERO_PWM_THRESHOLD) {
|
|
mode = PM_ZERO;
|
|
} else if (dutyCycle > FULL_PWM_THRESHOLD) {
|
|
mode = PM_FULL;
|
|
} else {
|
|
mode = PM_NORMAL;
|
|
seq.setSwitchTime(0, dutyCycle);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* returns absolute timestamp of state change
|
|
*/
|
|
static efitick_t getNextSwitchTimeNt(PwmConfig *state) {
|
|
efiAssert(CUSTOM_ERR_ASSERT, state->safe.phaseIndex < PWM_PHASE_MAX_COUNT, "phaseIndex range", 0);
|
|
int iteration = state->safe.iteration;
|
|
// we handle PM_ZERO and PM_FULL separately
|
|
float switchTime = state->mode == PM_NORMAL ? state->multiChannelStateSequence->getSwitchTime(state->safe.phaseIndex) : 1;
|
|
float periodNt = state->safe.periodNt;
|
|
#if DEBUG_PWM
|
|
efiPrintf("iteration=%d switchTime=%.2f period=%.2f", iteration, switchTime, period);
|
|
#endif /* DEBUG_PWM */
|
|
|
|
/**
|
|
* Once 'iteration' gets relatively high, we might lose calculation precision here.
|
|
* This is addressed by iterationLimit below, using any many cycles as possible without overflowing timeToSwitchNt
|
|
*/
|
|
uint32_t timeToSwitchNt = (uint32_t)((iteration + switchTime) * periodNt);
|
|
|
|
#if DEBUG_PWM
|
|
efiPrintf("start=%d timeToSwitch=%d", state->safe.start, timeToSwitch);
|
|
#endif /* DEBUG_PWM */
|
|
return state->safe.startNt + timeToSwitchNt;
|
|
}
|
|
|
|
void PwmConfig::setFrequency(float frequency) {
|
|
if (cisnan(frequency)) {
|
|
// explicit code just to be sure
|
|
periodNt = NAN;
|
|
return;
|
|
}
|
|
/**
|
|
* see #handleCycleStart()
|
|
* 'periodNt' is below 10 seconds here so we use 32 bit type for performance reasons
|
|
*/
|
|
periodNt = USF2NT(frequency2periodUs(frequency));
|
|
}
|
|
|
|
void PwmConfig::stop() {
|
|
isStopRequested = true;
|
|
}
|
|
|
|
void PwmConfig::handleCycleStart() {
|
|
if (safe.phaseIndex != 0) {
|
|
// https://github.com/rusefi/rusefi/issues/1030
|
|
firmwareError(CUSTOM_PWM_CYCLE_START, "handleCycleStart %d", safe.phaseIndex);
|
|
return;
|
|
}
|
|
|
|
if (pwmCycleCallback != NULL) {
|
|
pwmCycleCallback(this);
|
|
}
|
|
// Compute the maximum number of iterations without overflowing a uint32_t worth of timestamp
|
|
uint32_t iterationLimit = (0xFFFFFFFF / periodNt) - 2;
|
|
|
|
efiAssertVoid(CUSTOM_ERR_6580, periodNt != 0, "period not initialized");
|
|
efiAssertVoid(CUSTOM_ERR_6580, iterationLimit > 0, "iterationLimit invalid");
|
|
if (forceCycleStart || safe.periodNt != periodNt || safe.iteration == iterationLimit) {
|
|
/**
|
|
* period length has changed - we need to reset internal state
|
|
*/
|
|
safe.startNt = getTimeNowNt();
|
|
safe.iteration = 0;
|
|
safe.periodNt = periodNt;
|
|
|
|
forceCycleStart = false;
|
|
#if DEBUG_PWM
|
|
efiPrintf("state reset start=%d iteration=%d", state->safe.start, state->safe.iteration);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* @return Next time for signal toggle
|
|
*/
|
|
efitick_t PwmConfig::togglePwmState() {
|
|
if (isStopRequested) {
|
|
return 0;
|
|
}
|
|
|
|
#if DEBUG_PWM
|
|
efiPrintf("togglePwmState phaseIndex=%d iteration=%d", safe.phaseIndex, safe.iteration);
|
|
efiPrintf("period=%.2f safe.period=%.2f", period, safe.periodNt);
|
|
#endif
|
|
|
|
if (cisnan(periodNt)) {
|
|
/**
|
|
* NaN period means PWM is paused, we also set the pin low
|
|
*/
|
|
stateChangeCallback(0, arg);
|
|
return getTimeNowNt() + MS2NT(NAN_FREQUENCY_SLEEP_PERIOD_MS);
|
|
}
|
|
if (mode != PM_NORMAL) {
|
|
// in case of ZERO or FULL we are always at starting index
|
|
safe.phaseIndex = 0;
|
|
}
|
|
|
|
if (safe.phaseIndex == 0) {
|
|
handleCycleStart();
|
|
}
|
|
|
|
/**
|
|
* Here is where the 'business logic' - the actual pin state change is happening
|
|
*/
|
|
int cbStateIndex;
|
|
if (mode == PM_NORMAL) {
|
|
// callback state index is offset by one. todo: why? can we simplify this?
|
|
cbStateIndex = safe.phaseIndex == 0 ? multiChannelStateSequence->phaseCount - 1 : safe.phaseIndex - 1;
|
|
} else if (mode == PM_ZERO) {
|
|
cbStateIndex = 0;
|
|
} else {
|
|
cbStateIndex = 1;
|
|
}
|
|
|
|
{
|
|
ScopePerf perf(PE::PwmConfigStateChangeCallback);
|
|
stateChangeCallback(cbStateIndex, arg);
|
|
}
|
|
|
|
efitick_t nextSwitchTimeNt = getNextSwitchTimeNt(this);
|
|
#if DEBUG_PWM
|
|
efiPrintf("%s: nextSwitchTime %d", state->name, nextSwitchTime);
|
|
#endif /* DEBUG_PWM */
|
|
|
|
// If we're very far behind schedule, restart the cycle fresh to avoid scheduling a huge pile of events all at once
|
|
// This can happen during config write or debugging where CPU is halted for multiple seconds
|
|
bool isVeryBehindSchedule = nextSwitchTimeNt < getTimeNowNt() - MS2NT(10);
|
|
|
|
safe.phaseIndex++;
|
|
if (isVeryBehindSchedule || safe.phaseIndex == multiChannelStateSequence->phaseCount || mode != PM_NORMAL) {
|
|
safe.phaseIndex = 0; // restart
|
|
safe.iteration++;
|
|
|
|
if (isVeryBehindSchedule) {
|
|
forceCycleStart = true;
|
|
}
|
|
}
|
|
#if EFI_UNIT_TEST
|
|
printf("PWM: nextSwitchTimeNt=%d phaseIndex=%d iteration=%d\r\n", nextSwitchTimeNt,
|
|
safe.phaseIndex,
|
|
safe.iteration);
|
|
#endif /* EFI_UNIT_TEST */
|
|
return nextSwitchTimeNt;
|
|
}
|
|
|
|
/**
|
|
* Main PWM loop: toggle pin & schedule next invocation
|
|
*
|
|
* First invocation happens on application thread
|
|
*/
|
|
static void timerCallback(PwmConfig *state) {
|
|
ScopePerf perf(PE::PwmGeneratorCallback);
|
|
|
|
state->dbgNestingLevel++;
|
|
efiAssertVoid(CUSTOM_ERR_6581, state->dbgNestingLevel < 25, "PWM nesting issue");
|
|
|
|
efitick_t switchTimeNt = state->togglePwmState();
|
|
if (switchTimeNt == 0) {
|
|
// we are here when PWM gets stopped
|
|
return;
|
|
}
|
|
if (state->executor == nullptr) {
|
|
firmwareError(CUSTOM_NULL_EXECUTOR, "exec on %s", state->name);
|
|
return;
|
|
}
|
|
|
|
state->executor->scheduleByTimestampNt(state->name, &state->scheduling, switchTimeNt, { timerCallback, state });
|
|
state->dbgNestingLevel--;
|
|
}
|
|
|
|
/**
|
|
* Incoming parameters are potentially just values on current stack, so we have to copy
|
|
* into our own permanent storage, right?
|
|
*/
|
|
void copyPwmParameters(PwmConfig *state, MultiChannelStateSequence const * seq) {
|
|
state->multiChannelStateSequence = seq;
|
|
if (state->mode == PM_NORMAL) {
|
|
state->multiChannelStateSequence->checkSwitchTimes(1);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* this method also starts the timer cycle
|
|
* See also startSimplePwm
|
|
*/
|
|
void PwmConfig::weComplexInit(const char *msg, ExecutorInterface *executor,
|
|
MultiChannelStateSequence const * seq,
|
|
pwm_cycle_callback *pwmCycleCallback, pwm_gen_callback *stateChangeCallback) {
|
|
UNUSED(msg);
|
|
this->executor = executor;
|
|
isStopRequested = false;
|
|
|
|
efiAssertVoid(CUSTOM_ERR_6582, periodNt != 0, "period is not initialized");
|
|
if (seq->phaseCount == 0) {
|
|
firmwareError(CUSTOM_ERR_PWM_1, "signal length cannot be zero");
|
|
return;
|
|
}
|
|
if (seq->phaseCount > PWM_PHASE_MAX_COUNT) {
|
|
firmwareError(CUSTOM_ERR_PWM_2, "too many phases in PWM");
|
|
return;
|
|
}
|
|
efiAssertVoid(CUSTOM_ERR_6583, seq->waveCount > 0, "waveCount should be positive");
|
|
|
|
this->pwmCycleCallback = pwmCycleCallback;
|
|
this->stateChangeCallback = stateChangeCallback;
|
|
|
|
copyPwmParameters(this, seq);
|
|
|
|
safe.phaseIndex = 0;
|
|
safe.periodNt = -1;
|
|
safe.iteration = -1;
|
|
|
|
// let's start the indefinite callback loop of PWM generation
|
|
timerCallback(this);
|
|
}
|
|
|
|
void startSimplePwm(SimplePwm *state, const char *msg, ExecutorInterface *executor,
|
|
OutputPin *output, float frequency, float dutyCycle) {
|
|
efiAssertVoid(CUSTOM_ERR_PWM_STATE_ASSERT, state != NULL, "state");
|
|
efiAssertVoid(CUSTOM_ERR_PWM_DUTY_ASSERT, dutyCycle >= 0 && dutyCycle <= 1, "dutyCycle");
|
|
if (frequency < 1) {
|
|
warning(CUSTOM_OBD_LOW_FREQUENCY, "low frequency %.2f %s", frequency, msg);
|
|
return;
|
|
}
|
|
|
|
state->seq.setSwitchTime(0, dutyCycle);
|
|
state->seq.setSwitchTime(1, 1);
|
|
state->seq.setChannelState(0, 0, TV_FALL);
|
|
state->seq.setChannelState(0, 1, TV_RISE);
|
|
|
|
state->outputPins[0] = output;
|
|
|
|
state->setFrequency(frequency);
|
|
state->setSimplePwmDutyCycle(dutyCycle);
|
|
state->weComplexInit(msg, executor, &state->seq, NULL, (pwm_gen_callback*)applyPinState);
|
|
}
|
|
|
|
void startSimplePwmExt(SimplePwm *state, const char *msg,
|
|
ExecutorInterface *executor,
|
|
brain_pin_e brainPin, OutputPin *output, float frequency,
|
|
float dutyCycle) {
|
|
|
|
output->initPin(msg, brainPin);
|
|
|
|
startSimplePwm(state, msg, executor, output, frequency, dutyCycle);
|
|
}
|
|
|
|
/**
|
|
* @param dutyCycle value between 0 and 1
|
|
*/
|
|
void startSimplePwmHard(SimplePwm *state, const char *msg,
|
|
ExecutorInterface *executor,
|
|
brain_pin_e brainPin, OutputPin *output, float frequency,
|
|
float dutyCycle) {
|
|
#if EFI_PROD_CODE && HAL_USE_PWM
|
|
auto hardPwm = hardware_pwm::tryInitPin(msg, brainPin, frequency, dutyCycle);
|
|
|
|
if (hardPwm) {
|
|
state->hardPwm = hardPwm;
|
|
} else {
|
|
#endif
|
|
startSimplePwmExt(state, msg, executor, brainPin, output, frequency, dutyCycle);
|
|
#if EFI_PROD_CODE && HAL_USE_PWM
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* This method controls the actual hardware pins
|
|
*
|
|
* This method takes ~350 ticks.
|
|
*/
|
|
void applyPinState(int stateIndex, PwmConfig *state) /* pwm_gen_callback */ {
|
|
#if EFI_PROD_CODE
|
|
if (!engine->isPwmEnabled) {
|
|
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence->waveCount; channelIndex++) {
|
|
OutputPin *output = state->outputPins[channelIndex];
|
|
output->setValue(0);
|
|
}
|
|
return;
|
|
}
|
|
#endif // EFI_PROD_CODE
|
|
|
|
efiAssertVoid(CUSTOM_ERR_6663, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
|
|
efiAssertVoid(CUSTOM_ERR_6664, state->multiChannelStateSequence->waveCount <= PWM_PHASE_MAX_WAVE_PER_PWM, "invalid waveCount");
|
|
for (int channelIndex = 0; channelIndex < state->multiChannelStateSequence->waveCount; channelIndex++) {
|
|
OutputPin *output = state->outputPins[channelIndex];
|
|
int value = state->multiChannelStateSequence->getChannelState(channelIndex, stateIndex);
|
|
output->setValue(value);
|
|
}
|
|
}
|