294 lines
9.7 KiB
C++
294 lines
9.7 KiB
C++
/**
|
|
* @file advance_map.cpp
|
|
*
|
|
* @date Mar 27, 2013
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*
|
|
* This file is part of rusEfi - see http://rusefi.com
|
|
*
|
|
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
|
|
* the GNU General Public License as published by the Free Software Foundation; either
|
|
* version 3 of the License, or (at your option) any later version.
|
|
*
|
|
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
|
|
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with this program.
|
|
* If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "pch.h"
|
|
|
|
#include "advance_map.h"
|
|
#include "idle_thread.h"
|
|
#include "launch_control.h"
|
|
|
|
#if EFI_ENGINE_CONTROL
|
|
|
|
static ign_Map3D_t advanceMap;
|
|
static ign_Map3D_t iatAdvanceCorrectionMap;
|
|
|
|
// todo: reset this between cranking attempts?! #2735
|
|
int minCrankingRpm = 0;
|
|
|
|
/**
|
|
* @return ignition timing angle advance before TDC
|
|
*/
|
|
static angle_t getRunningAdvance(int rpm, float engineLoad) {
|
|
if (engineConfiguration->timingMode == TM_FIXED) {
|
|
return engineConfiguration->fixedTiming;
|
|
}
|
|
|
|
if (cisnan(engineLoad)) {
|
|
warning(CUSTOM_NAN_ENGINE_LOAD, "NaN engine load");
|
|
return NAN;
|
|
}
|
|
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(engineLoad), "invalid el", NAN);
|
|
|
|
float advanceAngle = advanceMap.getValue((float) rpm, engineLoad);
|
|
|
|
// get advance from the separate table for Idle
|
|
if (engineConfiguration->useSeparateAdvanceForIdle &&
|
|
engine->module<IdleController>().unmock().isIdlingOrTaper()) {
|
|
float idleAdvance = interpolate2d(rpm, config->idleAdvanceBins, config->idleAdvance);
|
|
|
|
auto [valid, tps] = Sensor::get(SensorType::DriverThrottleIntent);
|
|
if (valid) {
|
|
// interpolate between idle table and normal (running) table using TPS threshold
|
|
advanceAngle = interpolateClamped(0.0f, idleAdvance, engineConfiguration->idlePidDeactivationTpsThreshold, advanceAngle, tps);
|
|
}
|
|
}
|
|
|
|
#if EFI_LAUNCH_CONTROL
|
|
if (engine->launchController.isLaunchCondition && engineConfiguration->enableLaunchRetard) {
|
|
if (engineConfiguration->launchSmoothRetard) {
|
|
float launchAngle = engineConfiguration->launchTimingRetard;
|
|
int launchAdvanceRpmRange = engineConfiguration->launchTimingRpmRange;
|
|
int launchRpm = engineConfiguration->launchRpm;
|
|
// interpolate timing from rpm at launch triggered to full retard at launch launchRpm + launchTimingRpmRange
|
|
return interpolateClamped(launchRpm, advanceAngle, (launchRpm + launchAdvanceRpmRange), launchAngle, rpm);
|
|
} else {
|
|
return engineConfiguration->launchTimingRetard;
|
|
}
|
|
}
|
|
#endif /* EFI_LAUNCH_CONTROL */
|
|
|
|
return advanceAngle;
|
|
}
|
|
|
|
angle_t getAdvanceCorrections(int rpm) {
|
|
float iatCorrection;
|
|
|
|
const auto [iatValid, iat] = Sensor::get(SensorType::Iat);
|
|
|
|
if (!iatValid) {
|
|
iatCorrection = 0;
|
|
} else {
|
|
iatCorrection = iatAdvanceCorrectionMap.getValue(rpm, iat);
|
|
}
|
|
|
|
float pidTimingCorrection = engine->module<IdleController>().unmock().getIdleTimingAdjustment(rpm);
|
|
|
|
if (engineConfiguration->debugMode == DBG_IGNITION_TIMING) {
|
|
#if EFI_TUNER_STUDIO
|
|
tsOutputChannels.debugFloatField1 = iatCorrection;
|
|
tsOutputChannels.debugFloatField2 = engine->engineState.cltTimingCorrection;
|
|
tsOutputChannels.debugFloatField4 = pidTimingCorrection;
|
|
tsOutputChannels.debugIntField1 = engine->engineState.multispark.count;
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
}
|
|
|
|
return iatCorrection
|
|
+ engine->engineState.cltTimingCorrection
|
|
+ pidTimingCorrection;
|
|
}
|
|
|
|
/**
|
|
* @return ignition timing angle advance before TDC for Cranking
|
|
*/
|
|
static angle_t getCrankingAdvance(int rpm, float engineLoad) {
|
|
// get advance from the separate table for Cranking
|
|
if (engineConfiguration->useSeparateAdvanceForCranking) {
|
|
return interpolate2d(rpm, engineConfiguration->crankingAdvanceBins, engineConfiguration->crankingAdvance);
|
|
}
|
|
|
|
// Interpolate the cranking timing angle to the earlier running angle for faster engine start
|
|
angle_t crankingToRunningTransitionAngle = getRunningAdvance(engineConfiguration->cranking.rpm, engineLoad);
|
|
// interpolate not from zero, but starting from min. possible rpm detected
|
|
if (rpm < minCrankingRpm || minCrankingRpm == 0)
|
|
minCrankingRpm = rpm;
|
|
return interpolateClamped(minCrankingRpm, engineConfiguration->crankingTimingAngle, engineConfiguration->cranking.rpm, crankingToRunningTransitionAngle, rpm);
|
|
}
|
|
|
|
|
|
angle_t getAdvance(int rpm, float engineLoad) {
|
|
#if EFI_ENGINE_CONTROL && EFI_SHAFT_POSITION_INPUT
|
|
if (cisnan(engineLoad)) {
|
|
return 0; // any error should already be reported
|
|
}
|
|
|
|
angle_t angle;
|
|
|
|
bool isCranking = engine->rpmCalculator.isCranking();
|
|
if (isCranking) {
|
|
angle = getCrankingAdvance(rpm, engineLoad);
|
|
assertAngleRange(angle, "crAngle", CUSTOM_ERR_ANGLE_CR);
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "cr_AngleN", 0);
|
|
} else {
|
|
angle = getRunningAdvance(rpm, engineLoad);
|
|
|
|
if (cisnan(angle)) {
|
|
warning(CUSTOM_ERR_6610, "NaN angle from table");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Allow correction only if set to dynamic
|
|
// AND we're either not cranking OR allowed to correct in cranking
|
|
bool allowCorrections = engineConfiguration->timingMode == TM_DYNAMIC
|
|
&& (!isCranking || engineConfiguration->useAdvanceCorrectionsForCranking);
|
|
|
|
if (allowCorrections) {
|
|
angle_t correction = getAdvanceCorrections(rpm);
|
|
if (!cisnan(correction)) { // correction could be NaN during settings update
|
|
angle += correction;
|
|
}
|
|
}
|
|
|
|
efiAssert(CUSTOM_ERR_ASSERT, !cisnan(angle), "_AngleN5", 0);
|
|
fixAngle(angle, "getAdvance", CUSTOM_ERR_ADCANCE_CALC_ANGLE);
|
|
return angle;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
size_t getMultiSparkCount(int rpm) {
|
|
// Compute multispark (if enabled)
|
|
if (engineConfiguration->multisparkEnable
|
|
&& rpm <= engineConfiguration->multisparkMaxRpm
|
|
&& engineConfiguration->multisparkMaxExtraSparkCount > 0) {
|
|
// For zero RPM, disable multispark. We don't yet know the engine speed, so multispark may not be safe.
|
|
if (rpm == 0) {
|
|
return 0;
|
|
}
|
|
|
|
floatus_t multiDelay = engineConfiguration->multisparkSparkDuration;
|
|
floatus_t multiDwell = engineConfiguration->multisparkDwell;
|
|
|
|
// dwell times are below 10 seconds here so we use 32 bit type for performance reasons
|
|
engine->engineState.multispark.delay = (uint32_t)USF2NT(multiDelay);
|
|
engine->engineState.multispark.dwell = (uint32_t)USF2NT(multiDwell);
|
|
|
|
constexpr float usPerDegreeAt1Rpm = 60e6 / 360;
|
|
floatus_t usPerDegree = usPerDegreeAt1Rpm / rpm;
|
|
|
|
// How long is there for sparks? The user configured an angle, convert to time.
|
|
floatus_t additionalSparksUs = usPerDegree * engineConfiguration->multisparkMaxSparkingAngle;
|
|
// How long does one spark take?
|
|
floatus_t oneSparkTime = multiDelay + multiDwell;
|
|
|
|
// How many sparks can we fit in the alloted time?
|
|
float sparksFitInTime = additionalSparksUs / oneSparkTime;
|
|
|
|
// Take the floor (convert to uint8_t) - we want to undershoot, not overshoot
|
|
uint32_t floored = sparksFitInTime;
|
|
|
|
// Allow no more than the maximum number of extra sparks
|
|
return minI(floored, engineConfiguration->multisparkMaxExtraSparkCount);
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void initTimingMap() {
|
|
// We init both tables in RAM because here we're at a very early stage, with no config settings loaded.
|
|
advanceMap.init(config->ignitionTable, config->ignitionLoadBins,
|
|
config->ignitionRpmBins);
|
|
iatAdvanceCorrectionMap.init(config->ignitionIatCorrTable, config->ignitionIatCorrLoadBins,
|
|
config->ignitionIatCorrRpmBins);
|
|
}
|
|
|
|
/**
|
|
* @param octane gas octane number
|
|
* @param bore in mm
|
|
*/
|
|
float getTopAdvanceForBore(chamber_style_e style, int octane, double compression, double bore) {
|
|
int octaneCorrection;
|
|
if ( octane <= 90) {
|
|
octaneCorrection = -2;
|
|
} else if (octane < 94) {
|
|
octaneCorrection = -1;
|
|
} else {
|
|
octaneCorrection = 0;
|
|
}
|
|
|
|
int compressionCorrection;
|
|
if (compression <= 9) {
|
|
compressionCorrection = 2;
|
|
} else if (compression <= 10) {
|
|
compressionCorrection = 1;
|
|
} else if (compression <= 11) {
|
|
compressionCorrection = 0;
|
|
} else {
|
|
// compression ratio above 11
|
|
compressionCorrection = -2;
|
|
}
|
|
int base;
|
|
if (style == CS_OPEN) {
|
|
base = 33;
|
|
} else if (style == CS_CLOSED) {
|
|
base = 28;
|
|
} else {
|
|
// CS_SWIRL_TUMBLE
|
|
base = 22;
|
|
}
|
|
|
|
float boreCorrection = (bore - 4 * 25.4) / 25.4 * 6;
|
|
float result = base + octaneCorrection + compressionCorrection + boreCorrection;
|
|
return ((int)(result * 10)) / 10.0;
|
|
}
|
|
|
|
float getAdvanceForRpm(int rpm, float advanceMax) {
|
|
if (rpm >= 3000)
|
|
return advanceMax;
|
|
if (rpm < 600)
|
|
return 10;
|
|
return interpolateMsg("advance", 600, 10, 3000, advanceMax, rpm);
|
|
}
|
|
|
|
#define round10(x) efiRound(x, 0.1)
|
|
|
|
float getInitialAdvance(int rpm, float map, float advanceMax) {
|
|
map = minF(map, 100);
|
|
float advance = getAdvanceForRpm(rpm, advanceMax);
|
|
|
|
if (rpm >= 3000)
|
|
return round10(advance + 0.1 * (100 - map));
|
|
return round10(advance + 0.1 * (100 - map) * rpm / 3000);
|
|
}
|
|
|
|
/**
|
|
* this method builds a good-enough base timing advance map bases on a number of heuristics
|
|
*/
|
|
void buildTimingMap(float advanceMax) {
|
|
if (engineConfiguration->fuelAlgorithm != LM_SPEED_DENSITY) {
|
|
warning(CUSTOM_WRONG_ALGORITHM, "wrong algorithm for MAP-based timing");
|
|
return;
|
|
}
|
|
/**
|
|
* good enough (but do not trust us!) default timing map in case of MAP-based engine load
|
|
*/
|
|
for (int loadIndex = 0; loadIndex < IGN_LOAD_COUNT; loadIndex++) {
|
|
float load = config->ignitionLoadBins[loadIndex];
|
|
for (int rpmIndex = 0;rpmIndex<IGN_RPM_COUNT;rpmIndex++) {
|
|
float rpm = config->ignitionRpmBins[rpmIndex];
|
|
config->ignitionTable[loadIndex][rpmIndex] = getInitialAdvance(rpm, load, advanceMax);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // EFI_ENGINE_CONTROL
|