133 lines
4.5 KiB
C++
133 lines
4.5 KiB
C++
/**
|
|
* @file efiGpio.h
|
|
*
|
|
* @date Sep 26, 2014
|
|
* @author Andrey Belomutskiy, (c) 2012-2015
|
|
*/
|
|
#ifndef EFIGPIO_H_
|
|
#define EFIGPIO_H_
|
|
|
|
#include "main.h"
|
|
#include "io_pins.h"
|
|
|
|
// mode >= 0 is always true since that's an unsigned
|
|
#define assertOMode(mode) { \
|
|
efiAssertVoid(mode <= OM_OPENDRAIN_INVERTED, "invalid pin_output_mode_e"); \
|
|
}
|
|
|
|
/**
|
|
* @brief Single output pin reference and state
|
|
*/
|
|
class OutputPin {
|
|
public:
|
|
OutputPin();
|
|
bool_t isInitialized();
|
|
void setValue(int logicValue);
|
|
void setDefaultPinState(pin_output_mode_e *defaultState);
|
|
bool_t getLogicValue();
|
|
void unregister();
|
|
#if EFI_PROD_CODE || defined(__DOXYGEN__)
|
|
GPIO_TypeDef *port;
|
|
int pin;
|
|
#endif /* EFI_PROD_CODE */
|
|
pin_output_mode_e *modePtr;
|
|
/**
|
|
* we track current pin status so that we do not touch the actual hardware if we want to write new pin bit
|
|
* which is same as current pin value. This maybe helps in case of status leds, but maybe it's a total over-engineering
|
|
*/
|
|
int currentLogicValue;
|
|
};
|
|
|
|
class NamedOutputPin : public OutputPin {
|
|
public:
|
|
NamedOutputPin();
|
|
NamedOutputPin(const char *name);
|
|
const char *name;
|
|
};
|
|
|
|
typedef struct {
|
|
OutputPin mainRelay;
|
|
OutputPin fanRelay;
|
|
OutputPin acRelay;
|
|
OutputPin fuelPumpRelay;
|
|
OutputPin o2heater;
|
|
// OutputPin alternatorField;
|
|
OutputPin errorLedPin;
|
|
|
|
NamedOutputPin injectors[INJECTION_PIN_COUNT];
|
|
NamedOutputPin coils[IGNITION_PIN_COUNT];
|
|
} engine_pins_s;
|
|
|
|
/**
|
|
* it's a macro to be sure that stack is not used
|
|
* @return 0 for OM_DEFAULT and OM_OPENDRAIN
|
|
*/
|
|
|
|
#define getElectricalValue0(mode) ((mode) == OM_INVERTED || (mode) == OM_OPENDRAIN_INVERTED)
|
|
|
|
|
|
/**
|
|
* it's a macro to be sure that stack is not used
|
|
* @return 1 for OM_DEFAULT and OM_OPENDRAIN
|
|
*/
|
|
#define getElectricalValue1(mode) ((mode) == OM_DEFAULT || (mode) == OM_OPENDRAIN)
|
|
|
|
/**
|
|
* Sets the value of the pin. On this layer the value is assigned as is, without any conversion.
|
|
*/
|
|
|
|
#if EFI_PROD_CODE \
|
|
|
|
#define setPinValue(outputPin, electricalValue, logicValue) \
|
|
{ \
|
|
if ((outputPin)->currentLogicValue != (logicValue)) { \
|
|
palWritePad((outputPin)->port, (outputPin)->pin, (electricalValue)); \
|
|
(outputPin)->currentLogicValue = (logicValue); \
|
|
} \
|
|
}
|
|
#else /* EFI_PROD_CODE */
|
|
#define setPinValue(outputPin, electricalValue, logicValue) \
|
|
{ \
|
|
if ((outputPin)->currentLogicValue != (logicValue)) { \
|
|
(outputPin)->currentLogicValue = (logicValue); \
|
|
} \
|
|
}
|
|
#endif /* EFI_PROD_CODE */
|
|
|
|
#define getElectricalValue(logicalValue, mode) \
|
|
(logicalValue ? getElectricalValue1(mode) : getElectricalValue0(mode))
|
|
|
|
#if EFI_PROD_CODE
|
|
#define isPinAssigned(output) ((output)->port != GPIO_NULL)
|
|
#else
|
|
#define isPinAssigned(output) (true)
|
|
#endif
|
|
|
|
#define doSetOutputPinValue(pin, logicValue) doSetOutputPinValue2((&outputs[pin]), logicValue)
|
|
|
|
|
|
#if EFI_PROD_CODE
|
|
#define doSetOutputPinValue2(output, logicValue) { \
|
|
if (output->port != GPIO_NULL) { \
|
|
efiAssertVoid(output->modePtr!=NULL, "pin mode not initialized"); \
|
|
pin_output_mode_e mode = *output->modePtr; \
|
|
efiAssertVoid(mode <= OM_OPENDRAIN_INVERTED, "invalid pin_output_mode_e"); \
|
|
int eValue = getElectricalValue(logicValue, mode); \
|
|
setPinValue(output, eValue, logicValue); \
|
|
} \
|
|
}
|
|
#else
|
|
#define doSetOutputPinValue2(output, logicValue) { \
|
|
pin_output_mode_e mode = OM_DEFAULT; \
|
|
int eValue = getElectricalValue(logicValue, mode); \
|
|
setPinValue(output, eValue, logicValue); \
|
|
}
|
|
#endif
|
|
|
|
void outputPinRegisterExt2(const char *msg, OutputPin *output, brain_pin_e brainPin, pin_output_mode_e *outputMode);
|
|
|
|
void turnPinHigh(NamedOutputPin *output);
|
|
void turnPinLow(NamedOutputPin *output);
|
|
|
|
#endif /* EFIGPIO_H_ */
|