rusefi-full/firmware/controllers/scheduling/pwm_generator_logic.cpp

349 lines
10 KiB
C++

/**
* @file pwm_generator_logic.cpp
*
* This PWM implementation keep track of when it would be the next time to toggle the signal.
* It constantly sets timer to that next toggle time, then sets the timer again from the callback, and so on.
*
* @date Mar 2, 2014
* @author Andrey Belomutskiy, (c) 2012-2018
*/
#include "global.h"
#include "pwm_generator_logic.h"
#include "pwm_generator.h"
#include "error_handling.h"
/**
* We need to limit the number of iterations in order to avoid precision loss while calculating
* next toggle time
*/
#define ITERATION_LIMIT 1000
// 1% duty cycle
#define ZERO_PWM_THRESHOLD 0.01
SimplePwm::SimplePwm() {
waveInstance.init(pinStates);
sr[0] = waveInstance;
init(_switchTimes, sr);
}
SimplePwm::SimplePwm(const char *name) : SimplePwm() {
this->name = name;
}
void PwmConfig::baseConstructor() {
memset((void*)&scheduling, 0, sizeof(scheduling));
memset((void*)&safe, 0, sizeof(safe));
dbgNestingLevel = 0;
periodNt = NAN;
mode = PM_NORMAL;
memset(&outputPins, 0, sizeof(outputPins));
phaseCount = 0;
pwmCycleCallback = NULL;
stateChangeCallback = NULL;
executor = NULL;
name = "[noname]";
}
PwmConfig::PwmConfig() {
baseConstructor();
}
PwmConfig::PwmConfig(float *st, SingleWave *waves) {
baseConstructor();
multiWave.init(st, waves);
}
void PwmConfig::init(float *st, SingleWave *waves) {
multiWave.init(st, waves);
}
/**
* This method allows you to change duty cycle on the fly
* @param dutyCycle value between 0 and 1
* See also setFrequency
*/
void SimplePwm::setSimplePwmDutyCycle(float dutyCycle) {
if (cisnan(dutyCycle)) {
warning(CUSTOM_ERR_6691, "spwd:dutyCycle %.2f", dutyCycle);
return;
}
if (dutyCycle < 0 || dutyCycle > 1) {
warning(CUSTOM_ERR_6579, "spwd:dutyCycle %.2f", dutyCycle);
return;
}
if (dutyCycle == 0.0f && stateChangeCallback != NULL) {
/**
* set the pin low just to be super sure
* this custom handling of zero value comes from CJ125 heater code
* TODO: is this really needed? cover by unit test?
*/
stateChangeCallback(this, 0);
}
if (dutyCycle < ZERO_PWM_THRESHOLD) {
mode = PM_ZERO;
} else if (dutyCycle > FULL_PWM_THRESHOLD) {
mode = PM_FULL;
} else {
mode = PM_NORMAL;
multiWave.setSwitchTime(0, dutyCycle);
}
}
/**
* returns absolute timestamp of state change
*/
static efitimeus_t getNextSwitchTimeUs(PwmConfig *state) {
efiAssert(CUSTOM_ERR_ASSERT, state->safe.phaseIndex < PWM_PHASE_MAX_COUNT, "phaseIndex range", 0);
int iteration = state->safe.iteration;
// we handle PM_ZERO and PM_FULL separately
float switchTime = state->mode == PM_NORMAL ? state->multiWave.getSwitchTime(state->safe.phaseIndex) : 1;
float periodNt = state->safe.periodNt;
#if DEBUG_PWM
scheduleMsg(&logger, "iteration=%d switchTime=%.2f period=%.2f", iteration, switchTime, period);
#endif /* DEBUG_PWM */
/**
* Once 'iteration' gets relatively high, we might lose calculation precision here.
* This is addressed by ITERATION_LIMIT
*/
efitime_t timeToSwitchNt = (efitime_t) ((iteration + switchTime) * periodNt);
#if DEBUG_PWM
scheduleMsg(&logger, "start=%d timeToSwitch=%d", state->safe.start, timeToSwitch);
#endif /* DEBUG_PWM */
return NT2US(state->safe.startNt + timeToSwitchNt);
}
void PwmConfig::setFrequency(float frequency) {
if (cisnan(frequency)) {
// explicit code just to be sure
periodNt = NAN;
return;
}
/**
* see #handleCycleStart()
*/
periodNt = US2NT(frequency2periodUs(frequency));
}
void PwmConfig::handleCycleStart() {
efiAssertVoid(CUSTOM_ERR_6697, safe.phaseIndex == 0, "handleCycleStart");
if (pwmCycleCallback != NULL) {
pwmCycleCallback(this);
}
efiAssertVoid(CUSTOM_ERR_6580, periodNt != 0, "period not initialized");
if (safe.periodNt != periodNt || safe.iteration == ITERATION_LIMIT) {
/**
* period length has changed - we need to reset internal state
*/
safe.startNt = getTimeNowNt();
safe.iteration = 0;
safe.periodNt = periodNt;
#if DEBUG_PWM
scheduleMsg(&logger, "state reset start=%d iteration=%d", state->safe.start, state->safe.iteration);
#endif
}
}
/**
* @return Next time for signal toggle
*/
efitimeus_t PwmConfig::togglePwmState() {
#if DEBUG_PWM
scheduleMsg(&logger, "togglePwmState phaseIndex=%d iteration=%d", safe.phaseIndex, safe.iteration);
scheduleMsg(&logger, "period=%.2f safe.period=%.2f", period, safe.periodNt);
#endif
if (cisnan(periodNt)) {
/**
* NaN period means PWM is paused, we also set the pin low
*/
stateChangeCallback(this, 0);
return getTimeNowUs() + MS2US(NAN_FREQUENCY_SLEEP_PERIOD_MS);
}
if (mode != PM_NORMAL) {
// in case of ZERO or FULL we are always at starting index
safe.phaseIndex = 0;
}
if (safe.phaseIndex == 0) {
handleCycleStart();
}
/**
* Here is where the 'business logic' - the actual pin state change is happening
*/
int cbStateIndex;
if (mode == PM_NORMAL) {
// callback state index is offset by one. todo: why? can we simplify this?
cbStateIndex = safe.phaseIndex == 0 ? phaseCount - 1 : safe.phaseIndex - 1;
} else if (mode == PM_ZERO) {
cbStateIndex = 0;
} else {
cbStateIndex = 1;
}
stateChangeCallback(this, cbStateIndex);
efitimeus_t nextSwitchTimeUs = getNextSwitchTimeUs(this);
#if DEBUG_PWM
scheduleMsg(&logger, "%s: nextSwitchTime %d", state->name, nextSwitchTime);
#endif /* DEBUG_PWM */
// signed value is needed here
// int64_t timeToSwitch = nextSwitchTimeUs - getTimeNowUs();
// if (timeToSwitch < 1) {
// /**
// * We are here if we are late for a state transition.
// * At 12000RPM=200Hz with a 60 toothed wheel we need to change state every
// * 1000000 / 200 / 120 = ~41 uS. We are kind of OK.
// *
// * We are also here after a flash write. Flash write freezes the whole chip for a couple of seconds,
// * so PWM generation and trigger simulation generation would have to recover from this time lag.
// */
// //todo: introduce error and test this error handling warning(OBD_PCM_Processor_Fault, "PWM: negative switch time");
// timeToSwitch = 10;
// }
safe.phaseIndex++;
if (safe.phaseIndex == phaseCount || mode != PM_NORMAL) {
safe.phaseIndex = 0; // restart
safe.iteration++;
}
#if EFI_UNIT_TEST
printf("PWM: nextSwitchTimeUs=%d phaseIndex=%d iteration=%d\r\n", nextSwitchTimeUs,
safe.phaseIndex,
safe.iteration);
#endif /* EFI_UNIT_TEST */
return nextSwitchTimeUs;
}
/**
* Main PWM loop: toggle pin & schedule next invocation
*
* First invocation happens on application thread
*/
static void timerCallback(PwmConfig *state) {
state->dbgNestingLevel++;
efiAssertVoid(CUSTOM_ERR_6581, state->dbgNestingLevel < 25, "PWM nesting issue");
efitimeus_t switchTimeUs = state->togglePwmState();
if (state->executor == NULL) {
firmwareError(CUSTOM_ERR_6695, "exec on %s", state->name);
return;
}
state->executor->scheduleByTimestamp(&state->scheduling, switchTimeUs, (schfunc_t) timerCallback, state);
state->dbgNestingLevel--;
}
/**
* Incoming parameters are potentially just values on current stack, so we have to copy
* into our own permanent storage, right?
*/
void copyPwmParameters(PwmConfig *state, int phaseCount, float const *switchTimes, int waveCount, pin_state_t *const *pinStates) {
state->phaseCount = phaseCount;
for (int phaseIndex = 0; phaseIndex < phaseCount; phaseIndex++) {
state->multiWave.setSwitchTime(phaseIndex, switchTimes[phaseIndex]);
for (int channelIndex = 0; channelIndex < waveCount; channelIndex++) {
// print("output switch time index (%d/%d) at %.2f to %d\r\n", phaseIndex, channelIndex,
// switchTimes[phaseIndex], pinStates[waveIndex][phaseIndex]);
pin_state_t value = pinStates[channelIndex][phaseIndex];
state->multiWave.channels[channelIndex].setState(phaseIndex, value);
}
}
if (state->mode == PM_NORMAL) {
state->multiWave.checkSwitchTimes(phaseCount);
}
}
/**
* this method also starts the timer cycle
* See also startSimplePwm
*/
void PwmConfig::weComplexInit(const char *msg, ExecutorInterface *executor,
const int phaseCount,
float const *switchTimes,
const int waveCount,
pin_state_t *const*pinStates, pwm_cycle_callback *pwmCycleCallback, pwm_gen_callback *stateChangeCallback) {
UNUSED(msg);
this->executor = executor;
efiAssertVoid(CUSTOM_ERR_6582, periodNt != 0, "period is not initialized");
if (phaseCount == 0) {
firmwareError(CUSTOM_ERR_PWM_1, "signal length cannot be zero");
return;
}
if (phaseCount > PWM_PHASE_MAX_COUNT) {
firmwareError(CUSTOM_ERR_PWM_2, "too many phases in PWM");
return;
}
efiAssertVoid(CUSTOM_ERR_6583, waveCount > 0, "waveCount should be positive");
this->pwmCycleCallback = pwmCycleCallback;
this->stateChangeCallback = stateChangeCallback;
multiWave.waveCount = waveCount;
copyPwmParameters(this, phaseCount, switchTimes, waveCount, pinStates);
safe.phaseIndex = 0;
safe.periodNt = -1;
safe.iteration = -1;
// let's start the indefinite callback loop of PWM generation
timerCallback(this);
}
void startSimplePwm(SimplePwm *state, const char *msg, ExecutorInterface *executor,
OutputPin *output, float frequency, float dutyCycle, pwm_gen_callback *stateChangeCallback) {
efiAssertVoid(CUSTOM_ERR_6692, state != NULL, "state");
efiAssertVoid(CUSTOM_ERR_6665, dutyCycle >= 0 && dutyCycle <= 1, "dutyCycle");
efiAssertVoid(CUSTOM_ERR_6693, stateChangeCallback != NULL, "listener");
if (frequency < 1) {
warning(CUSTOM_OBD_LOW_FREQUENCY, "low frequency %.2f", frequency);
return;
}
float switchTimes[] = { dutyCycle, 1 };
pin_state_t pinStates0[] = { TV_FALL, TV_RISE };
state->setSimplePwmDutyCycle(dutyCycle);
pin_state_t *pinStates[1] = { pinStates0 };
state->outputPins[0] = output;
state->setFrequency(frequency);
state->weComplexInit(msg, executor, 2, switchTimes, 1, pinStates, NULL, stateChangeCallback);
}
void startSimplePwmExt(SimplePwm *state, const char *msg,
ExecutorInterface *executor,
brain_pin_e brainPin, OutputPin *output, float frequency,
float dutyCycle, pwm_gen_callback *stateChangeCallback) {
output->initPin(msg, brainPin);
startSimplePwm(state, msg, executor, output, frequency, dutyCycle, stateChangeCallback);
}
/**
* This method controls the actual hardware pins
*
* This method takes ~350 ticks.
*/
void applyPinState(PwmConfig *state, int stateIndex) {
efiAssertVoid(CUSTOM_ERR_6663, stateIndex < PWM_PHASE_MAX_COUNT, "invalid stateIndex");
efiAssertVoid(CUSTOM_ERR_6664, state->multiWave.waveCount <= PWM_PHASE_MAX_WAVE_PER_PWM, "invalid waveCount");
for (int channelIndex = 0; channelIndex < state->multiWave.waveCount; channelIndex++) {
OutputPin *output = state->outputPins[channelIndex];
int value = state->multiWave.getChannelState(channelIndex, stateIndex);
output->setValue(value);
}
}