rusefi-full/firmware/controllers/trigger/trigger_structure.cpp

445 lines
12 KiB
C++

/**
* @file trigger_structure.cpp
*
* @date Jan 20, 2014
* @author Andrey Belomutskiy, (c) 2012-2014
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "trigger_structure.h"
#include "error_handling.h"
#include "trigger_decoder.h"
#include "engine_math.h"
trigger_shape_helper::trigger_shape_helper() {
for (int i = 0; i < TRIGGER_CHANNEL_COUNT; i++) {
waves[i].init(pinStates[i]);
}
}
trigger_shape_s::trigger_shape_s() :
wave(switchTimesBuffer, NULL) {
reset(OM_NONE);
wave.waves = h.waves;
useRiseEdge = false;
gapBothDirections = false;
isSynchronizationNeeded = false;
invertOnAdd = false;
}
void trigger_shape_s::assignSize() {
shaftPositionEventCount = getSize();
}
int trigger_shape_s::getSize() const {
return size;
}
int trigger_shape_s::getTriggerShapeSynchPointIndex() {
return triggerShapeSynchPointIndex;
}
// todo: clean-up!
int getEngineCycleEventCount2(operation_mode_e mode, trigger_shape_s * s);
void trigger_shape_s::calculateTriggerSynchPoint(engine_configuration_s const*engineConfiguration, trigger_config_s const*triggerConfig) {
setTriggerShapeSynchPointIndex(engineConfiguration, findTriggerZeroEventIndex(this, triggerConfig));
}
void trigger_shape_s::setTriggerShapeSynchPointIndex(engine_configuration_s const *engineConfiguration, int triggerShapeSynchPointIndex) {
this->triggerShapeSynchPointIndex = triggerShapeSynchPointIndex;
int engineCycleEventCount = getEngineCycleEventCount2(operationMode, this);
float firstAngle = getAngle(triggerShapeSynchPointIndex);
for (int i = 0; i < engineCycleEventCount; i++) {
if (i == 0) {
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
eventAngles[i] = 0;
} else {
eventAngles[i] = fixAngle(engineConfiguration, getAngle((triggerShapeSynchPointIndex + i) % engineCycleEventCount) - firstAngle);
}
}
}
void trigger_shape_s::reset(operation_mode_e operationMode) {
this->operationMode = operationMode;
size = 0;
shaftPositionEventCount = 0;
triggerShapeSynchPointIndex = 0;
memset(initialState, 0, sizeof(initialState));
memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer));
memset(expectedEventCount, 0, sizeof(expectedEventCount));
wave.reset();
previousAngle = 0;
}
int multi_wave_s::getChannelState(int channelIndex, int phaseIndex) const {
return waves[channelIndex].pinStates[phaseIndex];
}
int multi_wave_s::waveIndertionAngle(float angle, int size) const {
for (int i = size - 1; i >= 0; i--) {
if (angle > switchTimes[i])
return i + 1;
}
return 0;
}
int multi_wave_s::findAngleMatch(float angle, int size) const {
for (int i = 0; i < size; i++) {
if (isSameF(switchTimes[i], angle))
return i;
}
return EFI_ERROR_CODE;
}
void multi_wave_s::setSwitchTime(int index, float value) {
switchTimes[index] = value;
}
TriggerState::TriggerState() {
cycleCallback = NULL;
shaft_is_synchronized = false;
toothed_previous_time = 0;
toothed_previous_duration = 0;
totalRevolutionCounter = 0;
clear();
memset(expectedTotalTime, 0, sizeof(expectedTotalTime));
totalEventCountBase = 0;
isFirstEvent = true;
}
int TriggerState::getCurrentIndex() {
return current_index;
}
uint64_t TriggerState::getStartOfRevolutionIndex() {
return totalEventCountBase;
}
uint64_t TriggerState::getTotalEventCounter() {
return totalEventCountBase + current_index;
}
void TriggerState::nextRevolution(int triggerEventCount, uint64_t nowUs) {
if (cycleCallback != NULL) {
cycleCallback(this);
}
memcpy(prevTotalTime, totalTime, sizeof(prevTotalTime));
prevCycleDuration = nowUs - startOfCycle;
startOfCycle = nowUs;
clear();
totalRevolutionCounter++;
totalEventCountBase += triggerEventCount;
}
int TriggerState::getTotalRevolutionCounter() {
return totalRevolutionCounter;
}
void TriggerState::nextTriggerEvent(trigger_wheel_e triggerWheel, uint64_t nowUs) {
uint64_t prevTime = timeOfPreviousEvent[triggerWheel];
if (prevTime != 0) {
// even event - apply the value
totalTime[triggerWheel] += (nowUs - prevTime);
timeOfPreviousEvent[triggerWheel] = 0;
} else {
// odd event - start accumulation
timeOfPreviousEvent[triggerWheel] = nowUs;
}
current_index++;
}
void TriggerState::clear() {
memset(eventCount, 0, sizeof(eventCount));
memset(timeOfPreviousEvent, 0, sizeof(timeOfPreviousEvent));
memset(totalTime, 0, sizeof(totalTime));
current_index = 0;
}
uint32_t trigger_shape_s::getLength() const {
return operationMode == FOUR_STROKE_CAM_SENSOR ? shaftPositionEventCount : 2 * shaftPositionEventCount;
}
float trigger_shape_s::getAngle(int index) const {
if (operationMode == FOUR_STROKE_CAM_SENSOR) {
return getSwitchAngle(index);
}
/**
* FOUR_STROKE_CRANK_SENSOR magic:
* We have two crank shaft revolutions for each engine cycle
* See also trigger_central.cpp
* See also getEngineCycleEventCount()
*/
int triggerEventCounter = size;
if (index < triggerEventCounter) {
return getSwitchAngle(index);
} else {
return 360 + getSwitchAngle(index - triggerEventCounter);
}
}
void trigger_shape_s::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam) {
efiAssertVoid(operationMode != OM_NONE, "operationMode not set");
trigger_value_e state;
if (invertOnAdd) {
state = (stateParam == TV_LOW) ? TV_HIGH : TV_LOW;
} else {
state = stateParam;
}
/**
* While '720' value works perfectly it has not much sense for crank sensor-only scenario.
* todo: accept angle as a value in the 0..1 range?
*/
angle /= 720;
expectedEventCount[waveIndex]++;
efiAssertVoid(angle > 0, "angle should be positive");
if (size > 0) {
if (angle <= previousAngle) {
firmwareError("invalid angle order: %f and %f", angle, previousAngle);
return;
}
}
previousAngle = angle;
if (size == 0) {
size = 1;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
single_wave_s *wave = &this->wave.waves[i];
if (wave == NULL) {
firmwareError("wave is NULL");
return;
}
if (wave->pinStates == NULL) {
firmwareError("wave pinStates is NULL");
return;
}
wave->pinStates[0] = initialState[i];
}
wave.setSwitchTime(0, angle);
wave.waves[waveIndex].pinStates[0] = state;
return;
}
int exactMatch = wave.findAngleMatch(angle, size);
if (exactMatch != EFI_ERROR_CODE) {
firmwareError("same angle: not supported");
return;
}
int index = wave.waveIndertionAngle(angle, size);
// shifting existing data
for (int i = size - 1; i >= index; i--) {
for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) {
wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index);
}
wave.setSwitchTime(i + 1, wave.getSwitchTime(i));
}
// int index = size;
size++;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
wave.waves[i].pinStates[index] = wave.getChannelState(i, index - 1);
}
wave.setSwitchTime(index, angle);
wave.waves[waveIndex].pinStates[index] = state;
}
int trigger_shape_s::getCycleDuration() const {
return (operationMode == FOUR_STROKE_CAM_SENSOR) ? 720 : 360;
}
float trigger_shape_s::getSwitchAngle(int index) const {
return getCycleDuration() * wave.getSwitchTime(index);
}
void multi_wave_s::checkSwitchTimes(int size) {
checkSwitchTimes2(size, switchTimes);
}
void setToothedWheelConfiguration(trigger_shape_s *s, int total, int skipped,
engine_configuration_s const *engineConfiguration) {
s->isSynchronizationNeeded = (skipped != 0);
s->totalToothCount = total;
s->skippedToothCount = skipped;
// todo: move to into configuration definition s->needSecondTriggerInput = false;
s->useRiseEdge = true;
initializeSkippedToothTriggerShapeExt(s, s->totalToothCount, s->skippedToothCount,
getOperationMode(engineConfiguration));
}
void setTriggerSynchronizationGap2(trigger_shape_s *s, float syncGapFrom, float syncRatioTo) {
s->isSynchronizationNeeded = true;
s->syncRatioFrom = syncGapFrom;
s->syncRatioTo = syncRatioTo;
}
void setTriggerSynchronizationGap(trigger_shape_s *s, float synchGap) {
setTriggerSynchronizationGap2(s, synchGap * 0.75f, synchGap * 1.25f);
}
#define S24 (720.0f / 24 / 2)
static float addAccordPair(trigger_shape_s *s, float sb) {
s->addEvent(sb, T_SECONDARY, TV_HIGH);
sb += S24;
s->addEvent(sb, T_SECONDARY, TV_LOW);
sb += S24;
return sb;
}
#define DIP 7.5f
static float addAccordPair3(trigger_shape_s *s, float sb) {
sb += DIP;
s->addEvent(sb, T_CHANNEL_3, TV_HIGH);
sb += DIP;
s->addEvent(sb, T_CHANNEL_3, TV_LOW);
sb += 2 * DIP;
return sb;
}
/**
* Thank you Dip!
* http://forum.pgmfi.org/viewtopic.php?f=2&t=15570start=210#p139007
*/
void configureHondaAccordCDDip(trigger_shape_s *s) {
s->reset(FOUR_STROKE_CAM_SENSOR);
s->initialState[T_SECONDARY] = TV_HIGH;
float sb = 0;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(90, T_SECONDARY, TV_LOW);
sb = 90;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(180, T_SECONDARY, TV_HIGH);
sb = 180;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(270, T_SECONDARY, TV_LOW);
sb = 270;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(360.0f - DIP, T_PRIMARY, TV_HIGH);
s->addEvent(360, T_SECONDARY, TV_HIGH);
sb = 360;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(450, T_SECONDARY, TV_LOW);
sb = 450;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(540, T_SECONDARY, TV_HIGH);
sb = 540;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(630, T_SECONDARY, TV_LOW);
sb = 630;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(720.0f - DIP, T_PRIMARY, TV_LOW);
// s->addEvent(720.0f - 12 * sb, T_SECONDARY, TV_LOW);
// s->addEvent(720.0f, T_SECONDARY, TV_LOW);
s->addEvent(720.0f, T_SECONDARY, TV_HIGH);
s->isSynchronizationNeeded = false;
s->assignSize();
}
void configureHondaAccordCD(trigger_shape_s *s, bool with3rdSignal) {
s->reset(FOUR_STROKE_CAM_SENSOR);
float sb = 5.0f;
float tdcWidth = 0.1854 * 720 / 4;
s->isSynchronizationNeeded = false;
sb = addAccordPair(s, sb);
if (with3rdSignal)
s->addEvent(sb - S24 / 2, T_CHANNEL_3, TV_HIGH);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
if (with3rdSignal)
s->addEvent(sb - S24 / 2, T_CHANNEL_3, TV_LOW);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
s->addEvent(1 * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH);
sb = addAccordPair(s, sb);
s->addEvent(1 * 180.0f, T_PRIMARY, TV_LOW);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
s->addEvent(2 * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH);
sb = addAccordPair(s, sb);
s->addEvent(2 * 180.0f, T_PRIMARY, TV_LOW);
for (int i = 3; i <= 4; i++) {
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
sb = addAccordPair(s, sb);
s->addEvent(i * 180.0f - tdcWidth, T_PRIMARY, TV_HIGH);
sb = addAccordPair(s, sb);
s->addEvent(i * 180.0f, T_PRIMARY, TV_LOW);
}
s->assignSize();
}