306 lines
7.9 KiB
C++
306 lines
7.9 KiB
C++
/**
|
|
* @file pid.cpp
|
|
*
|
|
* https://en.wikipedia.org/wiki/Feedback
|
|
* http://en.wikipedia.org/wiki/PID_controller
|
|
*
|
|
* @date Sep 16, 2014
|
|
* @author Andrey Belomutskiy, (c) 2012-2020
|
|
*/
|
|
|
|
#include "pch.h"
|
|
#include "os_access.h"
|
|
#include "efi_pid.h"
|
|
#include "math.h"
|
|
|
|
Pid::Pid() {
|
|
initPidClass(nullptr);
|
|
}
|
|
|
|
Pid::Pid(pid_s *parameters) {
|
|
initPidClass(parameters);
|
|
}
|
|
|
|
void Pid::initPidClass(pid_s *parameters) {
|
|
this->parameters = parameters;
|
|
resetCounter = 0;
|
|
|
|
reset();
|
|
}
|
|
|
|
bool Pid::isSame(const pid_s *parameters) const {
|
|
if (!this->parameters) {
|
|
// this 'null' could happen on first execution during initialization
|
|
return false;
|
|
}
|
|
efiAssert(OBD_PCM_Processor_Fault, parameters != NULL, "PID::isSame NULL", false);
|
|
return this->parameters->pFactor == parameters->pFactor
|
|
&& this->parameters->iFactor == parameters->iFactor
|
|
&& this->parameters->dFactor == parameters->dFactor
|
|
&& this->parameters->offset == parameters->offset
|
|
&& this->parameters->periodMs == parameters->periodMs;
|
|
}
|
|
|
|
/**
|
|
* @param Controller input / process output
|
|
* @returns Output from the PID controller / the input to the process
|
|
*/
|
|
float Pid::getOutput(float target, float input) {
|
|
float dTime = MS2SEC(GET_PERIOD_LIMITED(parameters));
|
|
return getOutput(target, input, dTime);
|
|
}
|
|
|
|
float Pid::getUnclampedOutput(float target, float input, float dTime) {
|
|
float error = (target - input) * errorAmplificationCoef;
|
|
this->target = target;
|
|
this->input = input;
|
|
|
|
float pTerm = parameters->pFactor * error;
|
|
updateITerm(parameters->iFactor * dTime * error);
|
|
dTerm = parameters->dFactor / dTime * (error - previousError);
|
|
|
|
previousError = error;
|
|
|
|
if (dTime <=0) {
|
|
warning(CUSTOM_PID_DTERM, "PID: unexpected dTime");
|
|
return pTerm + getOffset();
|
|
}
|
|
|
|
return pTerm + iTerm + dTerm + getOffset();
|
|
}
|
|
|
|
/**
|
|
* @param dTime seconds probably? :)
|
|
*/
|
|
float Pid::getOutput(float target, float input, float dTime) {
|
|
float output = getUnclampedOutput(target, input, dTime);
|
|
|
|
if (output > parameters->maxValue) {
|
|
output = parameters->maxValue;
|
|
} else if (output < getMinValue()) {
|
|
output = getMinValue();
|
|
}
|
|
this->output = output;
|
|
return output;
|
|
}
|
|
|
|
void Pid::updateFactors(float pFactor, float iFactor, float dFactor) {
|
|
parameters->pFactor = pFactor;
|
|
parameters->iFactor = iFactor;
|
|
parameters->dFactor = dFactor;
|
|
reset();
|
|
}
|
|
|
|
void Pid::reset() {
|
|
dTerm = iTerm = 0;
|
|
output = input = target = previousError = 0;
|
|
errorAmplificationCoef = 1.0f;
|
|
resetCounter++;
|
|
}
|
|
|
|
float Pid::getP() const {
|
|
return parameters->pFactor;
|
|
}
|
|
|
|
float Pid::getI() const {
|
|
return parameters->iFactor;
|
|
}
|
|
|
|
float Pid::getPrevError() const {
|
|
return previousError;
|
|
}
|
|
|
|
float Pid::getIntegration() const {
|
|
return iTerm;
|
|
}
|
|
|
|
float Pid::getD() const {
|
|
return parameters->dFactor;
|
|
}
|
|
|
|
float Pid::getOffset(void) const {
|
|
return parameters->offset;
|
|
}
|
|
|
|
float Pid::getMinValue(void) const {
|
|
return parameters->minValue;
|
|
}
|
|
|
|
void Pid::setErrorAmplification(float coef) {
|
|
errorAmplificationCoef = coef;
|
|
}
|
|
|
|
#if EFI_TUNER_STUDIO
|
|
void Pid::postState(TunerStudioOutputChannels *tsOutputChannels) const {
|
|
postState(tsOutputChannels, 1);
|
|
}
|
|
|
|
void Pid::postState(pid_status_s *pidStatus) const {
|
|
pidStatus->output = output;
|
|
pidStatus->error = getPrevError();
|
|
pidStatus->iTerm = iTerm;
|
|
pidStatus->dTerm = dTerm;
|
|
}
|
|
|
|
/**
|
|
* see https://rusefi.com/wiki/index.php?title=Manual:Debug_fields
|
|
*/
|
|
void Pid::postState(TunerStudioOutputChannels *tsOutputChannels, int pMult) const {
|
|
tsOutputChannels->debugFloatField1 = output;
|
|
tsOutputChannels->debugFloatField2 = iTerm;
|
|
tsOutputChannels->debugFloatField3 = getPrevError();
|
|
tsOutputChannels->debugFloatField4 = getI();
|
|
tsOutputChannels->debugFloatField5 = getD();
|
|
tsOutputChannels->debugFloatField6 = dTerm;
|
|
// tsOutputChannels->debugFloatField6 = parameters->minValue;
|
|
tsOutputChannels->debugFloatField7 = parameters->maxValue;
|
|
tsOutputChannels->debugIntField1 = getP() * pMult;
|
|
tsOutputChannels->debugIntField2 = getOffset();
|
|
tsOutputChannels->debugIntField3 = resetCounter;
|
|
tsOutputChannels->debugIntField4 = parameters->periodMs;
|
|
}
|
|
#endif /* EFI_TUNER_STUDIO */
|
|
|
|
void Pid::sleep() {
|
|
#if !EFI_UNIT_TEST
|
|
int periodMs = maxI(10, parameters->periodMs);
|
|
chThdSleepMilliseconds(periodMs);
|
|
#endif /* EFI_UNIT_TEST */
|
|
}
|
|
|
|
void Pid::showPidStatus(const char*msg) const {
|
|
efiPrintf("%s settings: offset=%f P=%.5f I=%.5f D=%.5f period=%dms",
|
|
msg,
|
|
getOffset(),
|
|
parameters->pFactor,
|
|
parameters->iFactor,
|
|
parameters->dFactor,
|
|
parameters->periodMs);
|
|
|
|
efiPrintf("%s status: value=%.2f input=%.2f/target=%.2f iTerm=%.5f dTerm=%.5f",
|
|
msg,
|
|
output,
|
|
input,
|
|
target,
|
|
iTerm, dTerm);
|
|
|
|
}
|
|
|
|
void Pid::updateITerm(float value) {
|
|
iTerm += value;
|
|
/**
|
|
* If we have exceeded the ability of the controlled device to hit target, the I factor will keep accumulating and approach infinity.
|
|
* Here we limit the I-term #353
|
|
*/
|
|
if (iTerm > parameters->maxValue * 100) {
|
|
iTerm = parameters->maxValue * 100;
|
|
}
|
|
if (iTerm > iTermMax) {
|
|
iTerm = iTermMax;
|
|
}
|
|
|
|
// this is kind of a hack. a proper fix would be having separate additional settings 'maxIValue' and 'minIValye'
|
|
if (iTerm < -parameters->maxValue * 100)
|
|
iTerm = -parameters->maxValue * 100;
|
|
if (iTerm < iTermMin) {
|
|
iTerm = iTermMin;
|
|
}
|
|
}
|
|
|
|
|
|
PidCic::PidCic() {
|
|
// call our derived reset()
|
|
reset();
|
|
}
|
|
|
|
PidCic::PidCic(pid_s *parameters) : Pid(parameters) {
|
|
// call our derived reset()
|
|
reset();
|
|
}
|
|
|
|
void PidCic::reset(void) {
|
|
Pid::reset();
|
|
|
|
totalItermCnt = 0;
|
|
for (int i = 0; i < PID_AVG_BUF_SIZE; i++)
|
|
iTermBuf[i] = 0;
|
|
iTermInvNum = 1.0f / (float)PID_AVG_BUF_SIZE;
|
|
}
|
|
|
|
float PidCic::getOutput(float target, float input, float dTime) {
|
|
return getUnclampedOutput(target, input, dTime);
|
|
}
|
|
|
|
void PidCic::updateITerm(float value) {
|
|
// use a variation of cascaded integrator-comb (CIC) filtering to get non-overflow iTerm
|
|
totalItermCnt++;
|
|
int localBufPos = (totalItermCnt >> PID_AVG_BUF_SIZE_SHIFT) % PID_AVG_BUF_SIZE;
|
|
int localPrevBufPos = ((totalItermCnt - 1) >> PID_AVG_BUF_SIZE_SHIFT) % PID_AVG_BUF_SIZE;
|
|
|
|
// reset old buffer cell
|
|
if (localPrevBufPos != localBufPos)
|
|
iTermBuf[localBufPos] = 0;
|
|
// integrator stage
|
|
iTermBuf[localBufPos] += value;
|
|
|
|
// return moving average of all sums, to smoothen the result
|
|
float iTermSum = 0;
|
|
for (int i = 0; i < PID_AVG_BUF_SIZE; i++) {
|
|
iTermSum += iTermBuf[i];
|
|
}
|
|
iTerm = iTermSum * iTermInvNum;
|
|
}
|
|
|
|
PidIndustrial::PidIndustrial() : Pid() {
|
|
}
|
|
|
|
PidIndustrial::PidIndustrial(pid_s *parameters) : Pid(parameters) {
|
|
}
|
|
|
|
float PidIndustrial::getOutput(float target, float input, float dTime) {
|
|
float ad, bd;
|
|
float error = (target - input) * errorAmplificationCoef;
|
|
float pTerm = parameters->pFactor * error;
|
|
|
|
// calculate dTerm coefficients
|
|
if (fabsf(derivativeFilterLoss) > DBL_EPSILON) {
|
|
// restore Td in the Standard form from the Parallel form: Td = Kd / Kc
|
|
float Td = parameters->dFactor / parameters->pFactor;
|
|
// calculate the backward differences approximation of the derivative term
|
|
ad = Td / (Td + dTime / derivativeFilterLoss);
|
|
bd = parameters->pFactor * ad / derivativeFilterLoss;
|
|
} else {
|
|
// According to the Theory of limits, if p.derivativeFilterLoss -> 0, then
|
|
// lim(ad) = 0; lim(bd) = p.pFactor * Td / dTime = p.dFactor / dTime
|
|
// i.e. dTerm becomes equal to Pid's
|
|
ad = 0.0f;
|
|
bd = parameters->dFactor / dTime;
|
|
}
|
|
|
|
// (error - previousError) = (target-input) - (target-prevousInput) = -(input - prevousInput)
|
|
dTerm = dTerm * ad + (error - previousError) * bd;
|
|
|
|
updateITerm(parameters->iFactor * dTime * error);
|
|
|
|
// calculate output and apply the limits
|
|
float output = pTerm + iTerm + dTerm + getOffset();
|
|
float limitedOutput = limitOutput(output);
|
|
|
|
// apply the integrator anti-windup on top of the "normal" iTerm change above
|
|
// If p.antiwindupFreq = 0, then iTerm is equal to PidParallelController's
|
|
iTerm += dTime * antiwindupFreq * (limitedOutput - output);
|
|
|
|
// update the state
|
|
previousError = error;
|
|
|
|
return limitedOutput;
|
|
}
|
|
|
|
float PidIndustrial::limitOutput(float v) const {
|
|
if (v < getMinValue())
|
|
v = getMinValue();
|
|
if (v > parameters->maxValue)
|
|
v = parameters->maxValue;
|
|
return v;
|
|
}
|