rusefi-full/firmware/controllers/math/pid_auto_tune.h

191 lines
5.5 KiB
C++

/*
* pid_auto_tune.h
*
* http://brettbeauregard.com/blog/2012/01/arduino-pid-autotune-library/
* https://www.ripublication.com/ijeer17/ijeerv9n6_02.pdf
*
*
* Created on: Sep 13, 2017
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#pragma once
#include "global.h"
// that's a weird piece of code for sure
#ifndef byte
typedef unsigned char byte;
#endif
// irrational constants
#define CONST_SQRT2_DIV_2 0.70710678118654752440
// verbose debug option
#undef AUTOTUNE_DEBUG
// defining this option implements relay bias
// this is useful to adjust the relay output values
// during the auto tuning to recover symmetric
// oscillations
// this can compensate for load disturbance
// and equivalent signals arising from nonlinear
// or non-stationary processes
// any improvement in the tunings seems quite modest
// but sometimes unbalanced oscillations can be
// persuaded to converge where they might not
// otherwise have done so
#undef AUTOTUNE_RELAY_BIAS
// average amplitude of successive peaks must differ by no more than this proportion
// relative to half the difference between maximum and minimum of last 2 cycles
#define AUTOTUNE_PEAK_AMPLITUDE_TOLERANCE 0.05
// ratio of up/down relay step duration should differ by no more than this tolerance
// biasing the relay con give more accurate estimates of the tuning parameters but
// setting the tolerance too low will prolong the autotune procedure unnecessarily
// this parameter also sets the minimum bias in the relay as a proportion of its amplitude
#define AUTOTUNE_STEP_ASYMMETRY_TOLERANCE 0.20
// auto tune terminates if waiting too long between peaks or relay steps
// set larger value for processes with long delays or time constants
#define AUTOTUNE_MAX_WAIT_MINUTES 5
// Ziegler-Nichols type auto tune rules
// in tabular form
struct Tuning
{
byte _divisor[3];
bool PI_controller() const
{
return _divisor[2] == 0;
}
double divisor(byte index) const
{
return (double)(_divisor[index] * 0.05);
}
};
#define STEPCOUNT 5
class PID_AutoTune
{
public:
// constants ***********************************************************************************
// auto tune method
enum
{
ZIEGLER_NICHOLS_PI = 0,
ZIEGLER_NICHOLS_PID = 1,
TYREUS_LUYBEN_PI,
TYREUS_LUYBEN_PID,
CIANCONE_MARLIN_PI,
CIANCONE_MARLIN_PID,
AMIGOF_PI,
PESSEN_INTEGRAL_PID,
SOME_OVERSHOOT_PID,
NO_OVERSHOOT_PID
};
// tuning rule divisor
enum
{
KP_DIVISOR = 0,
TI_DIVISOR = 1,
TD_DIVISOR = 2
};
// commonly used methods ***********************************************************************
PID_AutoTune(); // * Constructor. links the Autotune to a given PID
bool Runtime(Logging *logging); // * Similar to the PID Compute function,
// returns true when done, otherwise returns false
void Cancel(); // * Stops the AutoTune
void reset();
void SetOutputStep(double); // * how far above and below the starting value will
// the output step?
double GetOutputStep() const; //
void SetControlType(byte); // * Determines tuning algorithm
byte GetControlType() const; // * Returns tuning algorithm
void SetLookbackSec(int); // * how far back are we looking to identify peaks
int GetLookbackSec() const; //
void SetNoiseBand(double); // * the autotune will ignore signal chatter smaller
// than this value
double GetNoiseBand(); // this should be accurately set
float GetKp() const; // * once autotune is complete, these functions contain the
float GetKi() const; // computed tuning parameters.
float GetKd() const; //
Logging *logger;
byte peakCount;
float input;
// suggested P coefficient while auto-tuning
float output;
void setOutput(float output);
#if EFI_UNIT_TEST
double absMax;
double absMin;
#endif /* EFI_UNIT_TEST */
double outputStart;
unsigned long sampleTime;
byte nLookBack;
void setState(PidAutoTune_AutoTunerState state);
void setPeakType(PidAutoTune_Peak peakType);
PidAutoTune_AutoTunerState state; // * state of autotuner finite state machine
private:
double oStep;
double processValueOffset(double, // * returns an estimate of the process value offset
double); // as a proportion of the amplitude
double setpoint;
double noiseBand;
byte controlType; // * selects autotune algorithm
unsigned long lastTime;
PidAutoTune_Peak peakType;
unsigned long lastPeakTime[STEPCOUNT]; // * peak time, most recent in array element 0
float lastPeaks[STEPCOUNT]; // * peak value, most recent in array element 0
float lastInputs[101]; // * process values, most recent in array element 0
byte inputCount;
float workingNoiseBand;
float workingOutputstep;
float inducedAmplitude;
float Kp, Ti, Td;
// used by AMIGOf tuning rule
double calculatePhaseLag(double); // * calculate phase lag from noiseBand and inducedAmplitude
double fastArcTan(double);
double newWorkingNoiseBand;
double K_process;
#if defined AUTOTUNE_RELAY_BIAS
double relayBias;
unsigned long lastStepTime[5]; // * step time, most recent in array element 0
double sumInputSinceLastStep[5]; // * integrated process values, most recent in array element 0
byte stepCount;
#endif
};