rusefi-full/firmware/controllers/trigger/trigger_structure.cpp

545 lines
15 KiB
C++

/**
* @file trigger_structure.cpp
*
* @date Jan 20, 2014
* @author Andrey Belomutskiy, (c) 2012-2015
*
* This file is part of rusEfi - see http://rusefi.com
*
* rusEfi is free software; you can redistribute it and/or modify it under the terms of
* the GNU General Public License as published by the Free Software Foundation; either
* version 3 of the License, or (at your option) any later version.
*
* rusEfi is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
* even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along with this program.
* If not, see <http://www.gnu.org/licenses/>.
*/
#include "main.h"
#include "trigger_structure.h"
#include "error_handling.h"
#include "trigger_decoder.h"
#include "engine_math.h"
EXTERN_ENGINE;
trigger_shape_helper::trigger_shape_helper() {
memset(&pinStates, 0, sizeof(pinStates));
for (int i = 0; i < TRIGGER_CHANNEL_COUNT; i++) {
waves[i].init(pinStates[i]);
}
}
TriggerShape::TriggerShape() :
wave(switchTimesBuffer, NULL) {
reset(OM_NONE, false);
wave.waves = h.waves;
// todo: false here, true in clear() what a mess!
useRiseEdge = false;
useOnlyPrimaryForSync = false;
gapBothDirections = false;
isSynchronizationNeeded = false;
// todo: reuse 'clear' method?
invertOnAdd = false;
tdcPosition = 0;
skippedToothCount = totalToothCount = 0;
syncRatioFrom = syncRatioTo = 0;
memset(eventAngles, 0, sizeof(eventAngles));
memset(frontOnlyIndexes, 0, sizeof(frontOnlyIndexes));
memset(isFrontEvent, 0, sizeof(isFrontEvent));
memset(triggerIndexByAngle, 0, sizeof(triggerIndexByAngle));
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
memset(&triggerSignals, 0, sizeof(triggerSignals));
#endif
}
int TriggerShape::getSize() const {
return size;
}
int TriggerShape::getTriggerShapeSynchPointIndex() {
return triggerShapeSynchPointIndex;
}
void TriggerShape::calculateTriggerSynchPoint(DECLARE_ENGINE_PARAMETER_F) {
trigger_config_s const*triggerConfig = &engineConfiguration->trigger;
triggerShapeSynchPointIndex = findTriggerZeroEventIndex(this, triggerConfig PASS_ENGINE_PARAMETER);
engine->engineCycleEventCount = getLength();
float firstAngle = getAngle(triggerShapeSynchPointIndex);
int frontOnlyIndex = 0;
for (int eventIndex = 0; eventIndex < engine->engineCycleEventCount; eventIndex++) {
if (eventIndex == 0) {
// explicit check for zero to avoid issues where logical zero is not exactly zero due to float nature
eventAngles[0] = 0;
// this value would be used in case of front-only
eventAngles[1] = 0;
frontOnlyIndexes[0] = 0;
} else {
int triggerDefinitionCoordinate = (triggerShapeSynchPointIndex + eventIndex) % engine->engineCycleEventCount;
int triggerDefinitionIndex = triggerDefinitionCoordinate >= size ? triggerDefinitionCoordinate - size : triggerDefinitionCoordinate;
float angle = getAngle(triggerDefinitionCoordinate) - firstAngle;
fixAngle(angle);
if (engineConfiguration->useOnlyFrontForTrigger) {
if (isFrontEvent[triggerDefinitionIndex]) {
frontOnlyIndex += 2;
eventAngles[frontOnlyIndex] = angle;
eventAngles[frontOnlyIndex + 1] = angle;
}
} else {
eventAngles[eventIndex] = angle;
}
frontOnlyIndexes[eventIndex] = frontOnlyIndex;
}
}
}
void TriggerShape::clear() {
tdcPosition = 0;
setTriggerSynchronizationGap(2);
// todo: true here, false in constructor() what a mess!
useRiseEdge = true;
invertOnAdd = false;
gapBothDirections = false;
}
void TriggerShape::reset(operation_mode_e operationMode, bool needSecondTriggerInput) {
this->operationMode = operationMode;
size = 0;
this->needSecondTriggerInput = needSecondTriggerInput;
triggerShapeSynchPointIndex = 0;
memset(initialState, 0, sizeof(initialState));
memset(switchTimesBuffer, 0, sizeof(switchTimesBuffer));
memset(expectedEventCount, 0, sizeof(expectedEventCount));
wave.reset();
previousAngle = 0;
}
int multi_wave_s::getChannelState(int channelIndex, int phaseIndex) const {
return waves[channelIndex].pinStates[phaseIndex];
}
int multi_wave_s::waveIndertionAngle(float angle, int size) const {
for (int i = size - 1; i >= 0; i--) {
if (angle > switchTimes[i])
return i + 1;
}
return 0;
}
int multi_wave_s::findAngleMatch(float angle, int size) const {
for (int i = 0; i < size; i++) {
if (isSameF(switchTimes[i], angle))
return i;
}
return EFI_ERROR_CODE;
}
void multi_wave_s::setSwitchTime(int index, float value) {
switchTimes[index] = value;
}
TriggerState::TriggerState() {
cycleCallback = NULL;
shaft_is_synchronized = false;
toothed_previous_time = 0;
toothed_previous_duration = 0;
totalRevolutionCounter = 0;
totalTriggerErrorCounter = 0;
orderingErrorCounter = 0;
currentDuration = 0;
curSignal = SHAFT_PRIMARY_DOWN;
prevSignal = SHAFT_PRIMARY_DOWN;
prevCycleDuration = 0;
startOfCycleNt = 0;
resetRunningCounters();
resetCurrentCycleState();
memset(expectedTotalTime, 0, sizeof(expectedTotalTime));
totalEventCountBase = 0;
isFirstEvent = true;
}
int TriggerState::getCurrentIndex() {
return currentCycle.current_index;
}
efitime_t TriggerState::getStartOfRevolutionIndex() {
return totalEventCountBase;
}
void TriggerState::resetRunningCounters() {
runningRevolutionCounter = 0;
runningTriggerErrorCounter = 0;
runningOrderingErrorCounter = 0;
}
efitime_t TriggerState::getTotalEventCounter() {
return totalEventCountBase + currentCycle.current_index;
}
int TriggerState::getTotalRevolutionCounter() {
return totalRevolutionCounter;
}
void TriggerState::resetCurrentCycleState() {
memset(currentCycle.eventCount, 0, sizeof(currentCycle.eventCount));
memset(currentCycle.timeOfPreviousEventNt, 0, sizeof(currentCycle.timeOfPreviousEventNt));
memset(currentCycle.totalTimeNt, 0, sizeof(currentCycle.totalTimeNt));
currentCycle.current_index = 0;
}
/**
* Trigger event count equals engine cycle event count if we have a cam sensor.
* Two trigger cycles make one engine cycle in case of a four stroke engine If we only have a cranksensor.
*/
uint32_t TriggerShape::getLength() const {
return operationMode == FOUR_STROKE_CAM_SENSOR ? getSize() : 2 * getSize();
}
float TriggerShape::getAngle(int index) const {
// todo: why is this check here? looks like the code below could be used universally
if (operationMode == FOUR_STROKE_CAM_SENSOR) {
return getSwitchAngle(index);
}
/**
* FOUR_STROKE_CRANK_SENSOR magic:
* We have two crank shaft revolutions for each engine cycle
* See also trigger_central.cpp
* See also getEngineCycleEventCount()
*/
int triggerEventCounter = size;
if (index < triggerEventCounter) {
return getSwitchAngle(index);
} else {
return 360 + getSwitchAngle(index - triggerEventCounter);
}
}
void TriggerShape::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam, float filterLeft, float filterRight) {
if (angle > filterLeft && angle < filterRight)
addEvent(angle, waveIndex, stateParam);
}
operation_mode_e TriggerShape::getOperationMode() {
return operationMode;
}
void TriggerShape::addEvent(float angle, trigger_wheel_e const waveIndex, trigger_value_e const stateParam) {
efiAssertVoid(operationMode != OM_NONE, "operationMode not set");
efiAssertVoid(waveIndex!= T_SECONDARY || needSecondTriggerInput, "secondary needed or not?");
trigger_value_e state;
if (invertOnAdd) {
state = (stateParam == TV_LOW) ? TV_HIGH : TV_LOW;
} else {
state = stateParam;
}
#if EFI_UNIT_TEST || defined(__DOXYGEN__)
int signal = waveIndex * 1000 + stateParam;
triggerSignals[size] = signal;
#endif
float engineCycle = getEngineCycle(operationMode);
/**
* While '720' value works perfectly it has not much sense for crank sensor-only scenario.
* todo: accept angle as a value in the 0..1 range?
*/
angle /= engineCycle;
#if EFI_PROD_CODE || defined(__DOXYGEN__)
// todo: PASS_ENGINE?
if (!engineConfiguration->useOnlyFrontForTrigger || stateParam == TV_HIGH) {
expectedEventCount[waveIndex]++;
}
#endif
efiAssertVoid(angle > 0, "angle should be positive");
if (size > 0) {
if (angle <= previousAngle) {
firmwareError("invalid angle order: %f and %f", angle, previousAngle);
return;
}
}
previousAngle = angle;
if (size == 0) {
size = 1;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
single_wave_s *wave = &this->wave.waves[i];
if (wave->pinStates == NULL) {
firmwareError("wave pinStates is NULL");
return;
}
wave->pinStates[0] = initialState[i];
}
isFrontEvent[0] = TV_HIGH == stateParam;
wave.setSwitchTime(0, angle);
wave.waves[waveIndex].pinStates[0] = state;
return;
}
int exactMatch = wave.findAngleMatch(angle, size);
if (exactMatch != EFI_ERROR_CODE) {
firmwareError("same angle: not supported");
return;
}
int index = wave.waveIndertionAngle(angle, size);
// shifting existing data
// todo: does this logic actually work? I think it does not!
for (int i = size - 1; i >= index; i--) {
for (int j = 0; j < PWM_PHASE_MAX_WAVE_PER_PWM; j++) {
wave.waves[j].pinStates[i + 1] = wave.getChannelState(j, index);
}
wave.setSwitchTime(i + 1, wave.getSwitchTime(i));
}
isFrontEvent[index] = TV_HIGH == stateParam;
if (index != size) {
firmwareError("are we ever here?");
}
// int index = size;
size++;
for (int i = 0; i < PWM_PHASE_MAX_WAVE_PER_PWM; i++) {
wave.waves[i].pinStates[index] = wave.getChannelState(i, index - 1);
}
wave.setSwitchTime(index, angle);
wave.waves[waveIndex].pinStates[index] = state;
}
int TriggerShape::getCycleDuration() const {
return (operationMode == FOUR_STROKE_CAM_SENSOR) ? 720 : 360;
}
float TriggerShape::getSwitchAngle(int index) const {
return getCycleDuration() * wave.getSwitchTime(index);
}
void multi_wave_s::checkSwitchTimes(int size) {
checkSwitchTimes2(size, switchTimes);
}
void setVwConfiguration(TriggerShape *s) {
efiAssertVoid(s != NULL, "TriggerShape is NULL");
operation_mode_e operationMode = FOUR_STROKE_CRANK_SENSOR;
s->useRiseEdge = true;
initializeSkippedToothTriggerShapeExt(s, 60, 2,
operationMode);
s->isSynchronizationNeeded = true;
s->reset(operationMode, false);
int totalTeethCount = 60;
int skippedCount = 2;
float engineCycle = getEngineCycle(operationMode);
float toothWidth = 0.5;
addSkippedToothTriggerEvents(T_PRIMARY, s, 60, 2, toothWidth, 0, engineCycle,
NO_LEFT_FILTER, 690);
float angleDown = engineCycle / totalTeethCount * (totalTeethCount - skippedCount - 1 + (1 - toothWidth) );
s->addEvent(0 + angleDown + 12, T_PRIMARY, TV_HIGH, NO_LEFT_FILTER, NO_RIGHT_FILTER);
s->addEvent(0 + engineCycle, T_PRIMARY, TV_LOW, NO_LEFT_FILTER, NO_RIGHT_FILTER);
s->setTriggerSynchronizationGap2(1.6, 4);
}
void setToothedWheelConfiguration(TriggerShape *s, int total, int skipped,
operation_mode_e operationMode) {
#if EFI_ENGINE_CONTROL || defined(__DOXYGEN__)
s->useRiseEdge = true;
initializeSkippedToothTriggerShapeExt(s, total, skipped,
operationMode);
#endif
}
void TriggerShape::setTriggerSynchronizationGap2(float syncRatioFrom, float syncRatioTo) {
isSynchronizationNeeded = true;
this->syncRatioFrom = syncRatioFrom;
this->syncRatioTo = syncRatioTo;
}
void TriggerShape::setTriggerSynchronizationGap(float synchRatio) {
setTriggerSynchronizationGap2(synchRatio * 0.75f, synchRatio * 1.25f);
}
#define S24 (720.0f / 24 / 2)
static float addAccordPair(TriggerShape *s, float sb, trigger_wheel_e const waveIndex) {
s->addEvent(sb, waveIndex, TV_HIGH);
sb += S24;
s->addEvent(sb, waveIndex, TV_LOW);
sb += S24;
return sb;
}
#define DIP 7.5f
static float addAccordPair3(TriggerShape *s, float sb) {
sb += DIP;
s->addEvent(sb, T_CHANNEL_3, TV_HIGH);
sb += DIP;
s->addEvent(sb, T_CHANNEL_3, TV_LOW);
sb += 2 * DIP;
return sb;
}
/**
* Thank you Dip!
* http://forum.pgmfi.org/viewtopic.php?f=2&t=15570start=210#p139007
*/
void configureHondaAccordCDDip(TriggerShape *s) {
s->reset(FOUR_STROKE_CAM_SENSOR, true);
s->initialState[T_SECONDARY] = TV_HIGH;
float sb = 0;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(90, T_SECONDARY, TV_LOW);
sb = 90;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(180, T_SECONDARY, TV_HIGH);
sb = 180;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(270, T_SECONDARY, TV_LOW);
sb = 270;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(360.0f - DIP, T_PRIMARY, TV_HIGH);
s->addEvent(360, T_SECONDARY, TV_HIGH);
sb = 360;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(450, T_SECONDARY, TV_LOW);
sb = 450;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(540, T_SECONDARY, TV_HIGH);
sb = 540;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(630, T_SECONDARY, TV_LOW);
sb = 630;
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
sb = addAccordPair3(s, sb);
s->addEvent(720.0f - DIP, T_PRIMARY, TV_LOW);
// s->addEvent(720.0f - 12 * sb, T_SECONDARY, TV_LOW);
// s->addEvent(720.0f, T_SECONDARY, TV_LOW);
s->addEvent(720.0f, T_SECONDARY, TV_HIGH);
s->isSynchronizationNeeded = false;
}
void configureHondaAccordCD(TriggerShape *s, bool withOneEventSignal, bool withFourEventSignal,
trigger_wheel_e const oneEventWave,
trigger_wheel_e const fourEventWave,
float prefix) {
s->reset(FOUR_STROKE_CAM_SENSOR, true);
// trigger_wheel_e const oneEventWave = T_CHANNEL_3;
// bool withFourEventSignal = true;
// trigger_wheel_e const fourEventWave = T_PRIMARY;
float sb = 5.0f + prefix;
float tdcWidth = 0.1854 * 720 / 4;
s->isSynchronizationNeeded = false;
sb = addAccordPair(s, sb, T_SECONDARY);
if (withOneEventSignal)
s->addEvent(sb - S24 / 2, oneEventWave, TV_HIGH);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
if (withOneEventSignal)
s->addEvent(sb - S24 / 2, oneEventWave, TV_LOW);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(1 * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH);
}
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(1 * 180.0f + prefix, fourEventWave, TV_LOW);
}
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb,T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(2 * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH);
}
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(2 * 180.0f + prefix, fourEventWave, TV_LOW);
}
for (int i = 3; i <= 4; i++) {
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(i * 180.0f + prefix - tdcWidth, fourEventWave, TV_HIGH);
}
sb = addAccordPair(s, sb, T_SECONDARY);
if (withFourEventSignal) {
s->addEvent(i * 180.0f + prefix, fourEventWave, TV_LOW);
}
}
}