rusefi-full/firmware/hw_layer/adc_inputs.cpp

616 lines
19 KiB
C++

/**
* @file adc_inputs.cpp
* @brief Low level ADC code
*
* rusEfi uses two ADC devices on the same 16 pins at the moment. Two ADC devices are used in orde to distinguish between
* fast and slow devices. The idea is that but only having few channels in 'fast' mode we can sample those faster?
*
* At the moment rusEfi does not allow to have more than 16 ADC channels combined. At the moment there is no flexibility to use
* any ADC pins, only the hardcoded choice of 16 pins.
*
* Slow ADC group is used for IAT, CLT, AFR, VBATT etc - this one is currently sampled at 20Hz
*
* Fast ADC group is used for TPS, MAP, MAF HIP - this one is currently sampled at 10KHz
* We need frequent MAP for map_averaging.cpp
* We need frequent TPS for better TPS/TPS enrichment and better ETB control
*
* 10KHz equals one measurement every 3.6 degrees at 6000 RPM
*
* @date Jan 14, 2013
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "global.h"
#if HAL_USE_ADC
#include "os_access.h"
#include "engine.h"
#include "adc_inputs.h"
#include "adc_subscription.h"
#include "AdcConfiguration.h"
#include "mpu_util.h"
#include "periodic_thread_controller.h"
#include "pin_repository.h"
#include "engine_math.h"
#include "engine_controller.h"
#include "maf.h"
#include "perf_trace.h"
/* Depth of the conversion buffer, channels are sampled X times each.*/
#define ADC_BUF_DEPTH_SLOW 8
#define ADC_BUF_DEPTH_FAST 4
static adc_channel_mode_e adcHwChannelEnabled[HW_MAX_ADC_INDEX];
static const char * adcHwChannelUsage[HW_MAX_ADC_INDEX];
EXTERN_ENGINE;
// Board voltage, with divider coefficient accounted for
float getVoltageDivided(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return getVoltage(msg, hwChannel PASS_ENGINE_PARAMETER_SUFFIX) * engineConfiguration->analogInputDividerCoefficient;
}
// voltage in MCU universe, from zero to VDD
float getVoltage(const char *msg, adc_channel_e hwChannel DECLARE_ENGINE_PARAMETER_SUFFIX) {
return adcToVolts(getAdcValue(msg, hwChannel));
}
AdcDevice::AdcDevice(ADCConversionGroup* hwConfig) {
this->hwConfig = hwConfig;
channelCount = 0;
conversionCount = 0;
errorsCount = 0;
hwConfig->sqr1 = 0;
hwConfig->sqr2 = 0;
hwConfig->sqr3 = 0;
memset(hardwareIndexByIndernalAdcIndex, 0, sizeof(hardwareIndexByIndernalAdcIndex));
memset(internalAdcIndexByHardwareIndex, 0xFFFFFFFF, sizeof(internalAdcIndexByHardwareIndex));
}
#if !defined(PWM_FREQ_FAST) || !defined(PWM_PERIOD_FAST)
/**
* 8000 RPM is 133Hz
* If we want to sample MAP once per 5 degrees we need 133Hz * (360 / 5) = 9576Hz of fast ADC
*/
// todo: migrate to continues ADC mode? probably not - we cannot afford the callback in
// todo: continues mode. todo: look into our options
#define PWM_FREQ_FAST 100000 /* PWM clock frequency. I wonder what does this setting mean? */
#define PWM_PERIOD_FAST 10 /* PWM period (in PWM ticks). */
#endif /* PWM_FREQ_FAST PWM_PERIOD_FAST */
// is there a reason to have this configurable at runtime?
#ifndef ADC_SLOW_DEVICE
#define ADC_SLOW_DEVICE ADCD1
#endif /* ADC_SLOW_DEVICE */
// is there a reason to have this configurable at runtime?
#ifndef ADC_FAST_DEVICE
#define ADC_FAST_DEVICE ADCD2
#endif /* ADC_FAST_DEVICE */
static volatile int slowAdcCounter = 0;
static LoggingWithStorage logger("ADC");
// todo: move this flag to Engine god object
static int adcDebugReporting = false;
EXTERN_ENGINE;
static adcsample_t getAvgAdcValue(int index, adcsample_t *samples, int bufDepth, int numChannels) {
uint32_t result = 0;
for (int i = 0; i < bufDepth; i++) {
result += samples[index];
index += numChannels;
}
// this truncation is guaranteed to not be lossy - the average can't be larger than adcsample_t
return static_cast<adcsample_t>(result / bufDepth);
}
// See https://github.com/rusefi/rusefi/issues/976 for discussion on these values
#define ADC_SAMPLING_SLOW ADC_SAMPLE_56
#define ADC_SAMPLING_FAST ADC_SAMPLE_28
/*
* ADC conversion group.
*/
static ADCConversionGroup adcgrpcfgSlow = { FALSE, 0, nullptr, NULL,
/* HW dependent part.*/
ADC_TwoSamplingDelay_20Cycles, // cr1
ADC_CR2_SWSTART, // cr2
/**
* here we configure all possible channels for slow mode. Some channels would not actually
* be used hopefully that's fine to configure all possible channels.
*/
ADC_SMPR1_SMP_AN10(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN13(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN14(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLING_SLOW) |
ADC_SMPR1_SMP_SENSOR(ADC_SAMPLE_144)
, // sample times for channels 10...18
ADC_SMPR2_SMP_AN0(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN1(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN2(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN3(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN4(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN7(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN8(ADC_SAMPLING_SLOW) |
ADC_SMPR2_SMP_AN9(ADC_SAMPLING_SLOW)
, // In this field must be specified the sample times for channels 0...9
0,
0,
0, // Conversion group sequence 13...16 + sequence length
0, // Conversion group sequence 7...12
0 // Conversion group sequence 1...6
};
AdcDevice slowAdc(&adcgrpcfgSlow);
void adc_callback_fast(ADCDriver *adcp, adcsample_t *buffer, size_t n);
static ADCConversionGroup adcgrpcfg_fast = { FALSE, 0 /* num_channels */, adc_callback_fast, NULL,
/* HW dependent part.*/
ADC_TwoSamplingDelay_5Cycles, // cr1
ADC_CR2_SWSTART, // cr2
/**
* here we configure all possible channels for fast mode. Some channels would not actually
* be used hopefully that's fine to configure all possible channels.
*
*/
ADC_SMPR1_SMP_AN10(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN11(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN12(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN13(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN14(ADC_SAMPLING_FAST) |
ADC_SMPR1_SMP_AN15(ADC_SAMPLING_FAST)
, // sample times for channels 10...18
ADC_SMPR2_SMP_AN0(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN1(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN2(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN3(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN4(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN5(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN6(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN7(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN8(ADC_SAMPLING_FAST) |
ADC_SMPR2_SMP_AN9(ADC_SAMPLING_FAST), // In this field must be specified the sample times for channels 0...9
0,
0,
0, // Conversion group sequence 13...16 + sequence length
0, // Conversion group sequence 7...12
0
// Conversion group sequence 1...6
};
AdcDevice fastAdc(&adcgrpcfg_fast);
#if HAL_USE_PWM
static void pwmpcb_fast(PWMDriver *pwmp) {
efiAssertVoid(CUSTOM_ERR_6659, getCurrentRemainingStack()> 32, "lwStAdcFast");
#if EFI_INTERNAL_ADC
(void) pwmp;
/*
* Starts an asynchronous ADC conversion operation, the conversion
* will be executed in parallel to the current PWM cycle and will
* terminate before the next PWM cycle.
*/
chSysLockFromISR()
;
if (ADC_FAST_DEVICE.state != ADC_READY &&
ADC_FAST_DEVICE.state != ADC_COMPLETE &&
ADC_FAST_DEVICE.state != ADC_ERROR) {
fastAdc.errorsCount++;
// todo: when? why? firmwareError(OBD_PCM_Processor_Fault, "ADC fast not ready?");
chSysUnlockFromISR()
;
return;
}
adcStartConversionI(&ADC_FAST_DEVICE, &adcgrpcfg_fast, fastAdc.samples, ADC_BUF_DEPTH_FAST);
chSysUnlockFromISR()
;
fastAdc.conversionCount++;
#endif /* EFI_INTERNAL_ADC */
}
#endif /* HAL_USE_PWM */
float getMCUInternalTemperature(void) {
#if defined(ADC_CHANNEL_SENSOR)
float TemperatureValue = adcToVolts(slowAdc.getAdcValueByHwChannel(ADC_CHANNEL_SENSOR));
TemperatureValue -= 0.760; // Subtract the reference voltage at 25 deg C
TemperatureValue /= .0025; // Divide by slope 2.5mV
TemperatureValue += 25.0; // Add the 25 deg C
return TemperatureValue;
#else
return 0;
#endif /* ADC_CHANNEL_SENSOR */
}
int getInternalAdcValue(const char *msg, adc_channel_e hwChannel) {
if (hwChannel == EFI_ADC_NONE) {
warning(CUSTOM_OBD_ANALOG_INPUT_NOT_CONFIGURED, "ADC: %s input is not configured", msg);
return -1;
}
#if EFI_ENABLE_MOCK_ADC
if (engine->engineState.mockAdcState.hasMockAdc[hwChannel])
return engine->engineState.mockAdcState.getMockAdcValue(hwChannel);
#endif /* EFI_ENABLE_MOCK_ADC */
if (adcHwChannelEnabled[hwChannel] == ADC_FAST) {
int internalIndex = fastAdc.internalAdcIndexByHardwareIndex[hwChannel];
// todo if ADC_BUF_DEPTH_FAST EQ 1
// return fastAdc.samples[internalIndex];
int value = getAvgAdcValue(internalIndex, fastAdc.samples, ADC_BUF_DEPTH_FAST, fastAdc.size());
return value;
}
if (adcHwChannelEnabled[hwChannel] != ADC_SLOW) {
warning(CUSTOM_OBD_WRONG_ADC_MODE, "ADC is off [%s] index=%d", msg, hwChannel);
}
return slowAdc.getAdcValueByHwChannel(hwChannel);
}
#if HAL_USE_PWM
static PWMConfig pwmcfg_fast = { PWM_FREQ_FAST, PWM_PERIOD_FAST, pwmpcb_fast, { {
PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL }, {
PWM_OUTPUT_DISABLED, NULL }, { PWM_OUTPUT_DISABLED, NULL } },
/* HW dependent part.*/
0, 0 };
#endif /* HAL_USE_PWM */
static void initAdcPin(brain_pin_e pin, const char *msg) {
UNUSED(msg);
// todo: migrate to scheduleMsg if we want this back print("adc %s\r\n", msg);
efiSetPadMode("adc input", pin, PAL_MODE_INPUT_ANALOG);
}
const char * getAdcMode(adc_channel_e hwChannel) {
if (slowAdc.isHwUsed(hwChannel)) {
return "slow";
}
if (fastAdc.isHwUsed(hwChannel)) {
return "fast";
}
return "INACTIVE - need restart";
}
static void initAdcHwChannel(adc_channel_e hwChannel) {
brain_pin_e pin = getAdcChannelBrainPin("adc", hwChannel);
initAdcPin(pin, "hw");
}
int AdcDevice::size() const {
return channelCount;
}
int AdcDevice::getAdcValueByHwChannel(int hwChannel) const {
int internalIndex = internalAdcIndexByHardwareIndex[hwChannel];
return values.adc_data[internalIndex];
}
int AdcDevice::getAdcValueByIndex(int internalIndex) const {
return values.adc_data[internalIndex];
}
void AdcDevice::invalidateSamplesCache() {
#if defined(STM32F7XX)
// The STM32F7xx has a data cache
// DMA operations DO NOT invalidate cache lines, since the ARM m7 doesn't have
// anything like a CCI that maintains coherency across multiple bus masters.
// As a result, we have to manually invalidate the D-cache any time we (the CPU)
// would like to read something that somebody else wrote (ADC via DMA, in this case)
SCB_InvalidateDCache_by_Addr(reinterpret_cast<uint32_t*>(samples), sizeof(samples));
#endif /* STM32F7XX */
}
void AdcDevice::init(void) {
hwConfig->num_channels = size();
hwConfig->sqr1 += ADC_SQR1_NUM_CH(size());
}
bool AdcDevice::isHwUsed(adc_channel_e hwChannelIndex) const {
for (int i = 0; i < channelCount; i++) {
if (hardwareIndexByIndernalAdcIndex[i] == hwChannelIndex) {
return true;
}
}
return false;
}
void AdcDevice::enableChannel(adc_channel_e hwChannel) {
int logicChannel = channelCount++;
internalAdcIndexByHardwareIndex[hwChannel] = logicChannel;
hardwareIndexByIndernalAdcIndex[logicChannel] = hwChannel;
if (logicChannel < 6) {
hwConfig->sqr3 += (hwChannel) << (5 * logicChannel);
} else if (logicChannel < 12) {
hwConfig->sqr2 += (hwChannel) << (5 * (logicChannel - 6));
} else {
hwConfig->sqr1 += (hwChannel) << (5 * (logicChannel - 12));
}
// todo: support for more then 12 channels? not sure how needed it would be
}
void AdcDevice::enableChannelAndPin(adc_channel_e hwChannel) {
enableChannel(hwChannel);
initAdcHwChannel(hwChannel);
}
static void printAdcValue(int channel) {
int value = getAdcValue("print", (adc_channel_e)channel);
float volts = adcToVoltsDivided(value);
scheduleMsg(&logger, "adc voltage : %.2f", volts);
}
adc_channel_e AdcDevice::getAdcHardwareIndexByInternalIndex(int index) const {
return hardwareIndexByIndernalAdcIndex[index];
}
static void printFullAdcReport(Logging *logger) {
scheduleMsg(logger, "fast %d slow %d", fastAdc.conversionCount, slowAdc.conversionCount);
for (int index = 0; index < slowAdc.size(); index++) {
appendMsgPrefix(logger);
adc_channel_e hwIndex = slowAdc.getAdcHardwareIndexByInternalIndex(index);
if (hwIndex != EFI_ADC_NONE && hwIndex != EFI_ADC_ERROR) {
ioportid_t port = getAdcChannelPort("print", hwIndex);
int pin = getAdcChannelPin(hwIndex);
int adcValue = slowAdc.getAdcValueByIndex(index);
appendPrintf(logger, " ch%d %s%d", index, portname(port), pin);
appendPrintf(logger, " ADC%d 12bit=%d", hwIndex, adcValue);
float volts = adcToVolts(adcValue);
appendPrintf(logger, " v=%.2f", volts);
appendMsgPostfix(logger);
scheduleLogging(logger);
}
}
}
static void setAdcDebugReporting(int value) {
adcDebugReporting = value;
scheduleMsg(&logger, "adcDebug=%d", adcDebugReporting);
}
void waitForSlowAdc(int lastAdcCounter) {
// we use slowAdcCounter instead of slowAdc.conversionCount because we need ADC_COMPLETE state
// todo: use sync.objects?
while (slowAdcCounter <= lastAdcCounter) {
chThdSleepMilliseconds(1);
}
}
int getSlowAdcCounter() {
return slowAdcCounter;
}
class SlowAdcController : public PeriodicController<256> {
public:
SlowAdcController()
: PeriodicController("ADC", NORMALPRIO + 5, 200)
{
}
void PeriodicTask(efitick_t nowNt) override {
{
ScopePerf perf(PE::AdcConversionSlow);
slowAdc.conversionCount++;
msg_t result = adcConvert(&ADC_SLOW_DEVICE, &adcgrpcfgSlow, slowAdc.samples, ADC_BUF_DEPTH_SLOW);
// If something went wrong - try again later
if (result == MSG_RESET || result == MSG_TIMEOUT) {
slowAdc.errorsCount++;
return;
}
#ifdef USE_ADC3_VBATT_HACK
void proteusAdcHack();
proteusAdcHack();
#endif
}
{
ScopePerf perf(PE::AdcProcessSlow);
slowAdc.invalidateSamplesCache();
/* Calculates the average values from the ADC samples.*/
for (int i = 0; i < slowAdc.size(); i++) {
adcsample_t value = getAvgAdcValue(i, slowAdc.samples, ADC_BUF_DEPTH_SLOW, slowAdc.size());
adcsample_t prev = slowAdc.values.adc_data[i];
float result = (slowAdcCounter == 0) ? value :
CONFIG(slowAdcAlpha) * value + (1 - CONFIG(slowAdcAlpha)) * prev;
slowAdc.values.adc_data[i] = (adcsample_t)result;
}
slowAdcCounter++;
AdcSubscription::UpdateSubscribers(nowNt);
}
}
};
static char errorMsgBuff[_MAX_FILLER + 2];
void addChannel(const char *name, adc_channel_e setting, adc_channel_mode_e mode) {
if (setting == EFI_ADC_NONE) {
return;
}
if (/*type-limited (int)setting < 0 || */(int)setting>=HW_MAX_ADC_INDEX) {
firmwareError(CUSTOM_INVALID_ADC, "Invalid ADC setting %s", name);
return;
}
if (adcHwChannelEnabled[setting] != ADC_OFF) {
getPinNameByAdcChannel(name, setting, errorMsgBuff);
firmwareError(CUSTOM_ERR_ADC_USED, "Analog input error: input \"%s\" selected for %s but was already used by %s", errorMsgBuff, name, adcHwChannelUsage[setting]);
}
adcHwChannelUsage[setting] = name;
adcHwChannelEnabled[setting] = mode;
}
void removeChannel(const char *name, adc_channel_e setting) {
(void)name;
if (setting == EFI_ADC_NONE) {
return;
}
adcHwChannelEnabled[setting] = ADC_OFF;
}
static void configureInputs(void) {
memset(adcHwChannelEnabled, 0, sizeof(adcHwChannelEnabled));
memset(adcHwChannelUsage, 0, sizeof(adcHwChannelUsage));
/**
* order of analog channels here is totally random and has no meaning
* we also have some weird implementation with internal indices - that all has no meaning, it's just a random implementation
* which does not mean anything.
*/
addChannel("MAP", engineConfiguration->map.sensor.hwChannel, ADC_FAST);
if (hasMafSensor()) {
addChannel("MAF", engineConfiguration->mafAdcChannel, ADC_FAST);
}
addChannel("hip", engineConfiguration->hipOutputChannel, ADC_FAST);
addChannel("baro", engineConfiguration->baroSensor.hwChannel, ADC_SLOW);
addChannel("TPS1_1", engineConfiguration->tps1_1AdcChannel, ADC_SLOW);
addChannel("TPS1_2", engineConfiguration->tps1_2AdcChannel, ADC_SLOW);
addChannel("TPS2_1", engineConfiguration->tps2_1AdcChannel, ADC_SLOW);
addChannel("TPS2_2", engineConfiguration->tps2_2AdcChannel, ADC_SLOW);
addChannel("fuel", engineConfiguration->fuelLevelSensor, ADC_SLOW);
addChannel("pPS", engineConfiguration->throttlePedalPositionAdcChannel, ADC_SLOW);
addChannel("VBatt", engineConfiguration->vbattAdcChannel, ADC_SLOW);
// not currently used addChannel("Vref", engineConfiguration->vRefAdcChannel, ADC_SLOW);
addChannel("CLT", engineConfiguration->clt.adcChannel, ADC_SLOW);
addChannel("IAT", engineConfiguration->iat.adcChannel, ADC_SLOW);
addChannel("AUXT#1", engineConfiguration->auxTempSensor1.adcChannel, ADC_SLOW);
addChannel("AUXT#2", engineConfiguration->auxTempSensor2.adcChannel, ADC_SLOW);
if (engineConfiguration->auxFastSensor1_adcChannel != INCOMPATIBLE_CONFIG_CHANGE) {
// allow EFI_ADC_0 next time we have an incompatible configuration change
addChannel("AUXF#1", engineConfiguration->auxFastSensor1_adcChannel, ADC_FAST);
}
addChannel("AFR", engineConfiguration->afr.hwChannel, ADC_SLOW);
addChannel("OilP", engineConfiguration->oilPressure.hwChannel, ADC_SLOW);
addChannel("AC", engineConfiguration->acSwitchAdc, ADC_SLOW);
if (engineConfiguration->high_fuel_pressure_sensor_1 != INCOMPATIBLE_CONFIG_CHANGE) {
addChannel("HFP1", engineConfiguration->high_fuel_pressure_sensor_1, ADC_SLOW);
}
if (engineConfiguration->high_fuel_pressure_sensor_2 != INCOMPATIBLE_CONFIG_CHANGE) {
addChannel("HFP2", engineConfiguration->high_fuel_pressure_sensor_2, ADC_SLOW);
}
if (CONFIG(isCJ125Enabled)) {
addChannel("cj125ur", engineConfiguration->cj125ur, ADC_SLOW);
addChannel("cj125ua", engineConfiguration->cj125ua, ADC_SLOW);
}
for (int i = 0; i < FSIO_ANALOG_INPUT_COUNT ; i++) {
addChannel("FSIOadc", engineConfiguration->fsioAdc[i], ADC_SLOW);
}
setAdcChannelOverrides();
}
static SlowAdcController slowAdcController;
void initAdcInputs() {
printMsg(&logger, "initAdcInputs()");
if (ADC_BUF_DEPTH_FAST > MAX_ADC_GRP_BUF_DEPTH)
firmwareError(CUSTOM_ERR_ADC_DEPTH_FAST, "ADC_BUF_DEPTH_FAST too high");
if (ADC_BUF_DEPTH_SLOW > MAX_ADC_GRP_BUF_DEPTH)
firmwareError(CUSTOM_ERR_ADC_DEPTH_SLOW, "ADC_BUF_DEPTH_SLOW too high");
configureInputs();
// migrate to 'enable adcdebug'
addConsoleActionI("adcdebug", &setAdcDebugReporting);
#if EFI_INTERNAL_ADC
/*
* Initializes the ADC driver.
*/
adcStart(&ADC_SLOW_DEVICE, NULL);
adcStart(&ADC_FAST_DEVICE, NULL);
adcSTM32EnableTSVREFE(); // Internal temperature sensor
for (int adc = 0; adc < HW_MAX_ADC_INDEX; adc++) {
adc_channel_mode_e mode = adcHwChannelEnabled[adc];
/**
* in board test mode all currently enabled ADC channels are running in slow mode
*/
if (mode == ADC_SLOW) {
slowAdc.enableChannelAndPin((adc_channel_e) (ADC_CHANNEL_IN0 + adc));
} else if (mode == ADC_FAST) {
fastAdc.enableChannelAndPin((adc_channel_e) (ADC_CHANNEL_IN0 + adc));
}
}
#if defined(ADC_CHANNEL_SENSOR)
// Internal temperature sensor, Available on ADC1 only
slowAdc.enableChannel((adc_channel_e)ADC_CHANNEL_SENSOR);
#endif /* ADC_CHANNEL_SENSOR */
slowAdc.init();
// Start the slow ADC thread
slowAdcController.Start();
if (CONFIG(isFastAdcEnabled)) {
fastAdc.init();
/*
* Initializes the PWM driver.
*/
#if HAL_USE_PWM
pwmStart(EFI_INTERNAL_FAST_ADC_PWM, &pwmcfg_fast);
pwmEnablePeriodicNotification(EFI_INTERNAL_FAST_ADC_PWM);
#endif /* HAL_USE_PWM */
}
addConsoleActionI("adc", (VoidInt) printAdcValue);
#else
printMsg(&logger, "ADC disabled");
#endif
}
void printFullAdcReportIfNeeded(Logging *logger) {
if (!adcDebugReporting)
return;
printFullAdcReport(logger);
}
#endif /* HAL_USE_ADC */