rusefi-full/firmware/controllers/system/efi_gpio.cpp

637 lines
20 KiB
C++

/**
* @file efi_gpio.cpp
* @brief EFI-related GPIO code
*
* @date Sep 26, 2014
* @author Andrey Belomutskiy, (c) 2012-2020
*/
#include "pch.h"
#include "os_access.h"
#include "drivers/gpio/gpio_ext.h"
#if EFI_ELECTRONIC_THROTTLE_BODY
#include "electronic_throttle.h"
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
#if EFI_ENGINE_SNIFFER
#include "engine_sniffer.h"
extern WaveChart waveChart;
#endif /* EFI_ENGINE_SNIFFER */
// todo: clean this mess, this should become 'static'/private
EnginePins enginePins;
pin_output_mode_e DEFAULT_OUTPUT = OM_DEFAULT;
pin_output_mode_e INVERTED_OUTPUT = OM_INVERTED;
static const char* const sparkNames[] = { "Coil 1", "Coil 2", "Coil 3", "Coil 4", "Coil 5", "Coil 6", "Coil 7", "Coil 8",
"Coil 9", "Coil 10", "Coil 11", "Coil 12"};
static const char* const trailNames[] = { "Trail 1", "Trail 2", "Trail 3", "Trail 4", "Trail 5", "Trail 6", "Trail 7", "Trail 8",
"Trail 9", "Trail 10", "Trail 11", "Trail 12"};
static const char* const trailShortNames[] = { "r1", "r2", "r3", "r4", "r5", "r6", "r7", "r8", "r9", "rA", "rB", "rD" };
const char *vvtNames[] = {
PROTOCOL_VVT1_NAME,
PROTOCOL_VVT2_NAME,
PROTOCOL_VVT3_NAME,
PROTOCOL_VVT4_NAME};
// these short names are part of engine sniffer protocol
static const char* const sparkShortNames[] = { PROTOCOL_COIL1_SHORT_NAME, "c2", "c3", "c4", "c5", "c6", "c7", "c8",
"c9", "cA", "cB", "cD"};
static const char* const injectorNames[] = { "Injector 1", "Injector 2", "Injector 3", "Injector 4", "Injector 5", "Injector 6",
"Injector 7", "Injector 8", "Injector 9", "Injector 10", "Injector 11", "Injector 12"};
static const char* const injectorShortNames[] = { PROTOCOL_INJ1_SHORT_NAME, "i2", "i3", "i4", "i5", "i6", "i7", "i8",
"j9", "iA", "iB", "iC"};
static const char* const auxValveShortNames[] = { "a1", "a2"};
static RegisteredOutputPin * registeredOutputHead = nullptr;
RegisteredNamedOutputPin::RegisteredNamedOutputPin(const char *name, short pinOffset,
short pinModeOffset) : RegisteredOutputPin(name, pinOffset, pinModeOffset) {
}
RegisteredOutputPin::RegisteredOutputPin(const char *registrationName, short pinOffset,
short pinModeOffset) {
this->registrationName = registrationName;
this->pinOffset = pinOffset;
this->pinModeOffset = pinModeOffset;
// adding into head of the list is so easy and since we do not care about order that's what we shall do
this->next = registeredOutputHead;
registeredOutputHead = this;
}
bool RegisteredOutputPin::isPinConfigurationChanged() {
#if EFI_PROD_CODE
brain_pin_e curPin = *(brain_pin_e *) ((void *) (&((char*)&activeConfiguration)[pinOffset]));
brain_pin_e newPin = *(brain_pin_e *) ((void *) (&((char*) engineConfiguration)[pinOffset]));
pin_output_mode_e curMode = *(pin_output_mode_e *) ((void *) (&((char*)&activeConfiguration)[pinModeOffset]));
pin_output_mode_e newMode = *(pin_output_mode_e *) ((void *) (&((char*) engineConfiguration)[pinModeOffset]));
return curPin != newPin || curMode != newMode;
#else
return true;
#endif // EFI_PROD_CODE
}
void RegisteredOutputPin::init(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
brain_pin_e newPin = *(brain_pin_e *) ((void *) (&((char*) engineConfiguration)[pinOffset]));
pin_output_mode_e *newMode = (pin_output_mode_e *) ((void *) (&((char*) engineConfiguration)[pinModeOffset]));
if (isPinConfigurationChanged()) {
this->initPin(registrationName, newPin, newMode);
}
}
void RegisteredOutputPin::unregister() {
if (isPinConfigurationChanged()) {
OutputPin::deInit();
}
}
#define CONFIG_OFFSET(x) x##_offset
// todo: pin and pinMode should be combined into a composite entity
// todo: one of the impediments is code generator hints handling (we need custom hints and those are not handled nice for fields of structs?)
#define CONFIG_PIN_OFFSETS(x) CONFIG_OFFSET(x##Pin), CONFIG_OFFSET(x##PinMode)
EnginePins::EnginePins() :
mainRelay("Main Relay", CONFIG_PIN_OFFSETS(mainRelay)),
hpfpValve("HPFP Valve", CONFIG_PIN_OFFSETS(hpfpValve)),
starterControl("Starter Relay", CONFIG_PIN_OFFSETS(starterControl)),
starterRelayDisable("Starter Disable Relay", CONFIG_PIN_OFFSETS(starterRelayDisable)),
fanRelay("Fan Relay", CONFIG_PIN_OFFSETS(fan)),
fanRelay2("Fan Relay 2", CONFIG_PIN_OFFSETS(fan2)),
acRelay("A/C Relay", CONFIG_PIN_OFFSETS(acRelay)),
fuelPumpRelay("Fuel pump Relay", CONFIG_PIN_OFFSETS(fuelPump)),
boostPin("Boost", CONFIG_PIN_OFFSETS(boostControl)),
idleSolenoidPin("Idle Valve", idle_solenoidPin_offset, idle_solenoidPinMode_offset),
secondIdleSolenoidPin("Idle Valve#2", CONFIG_OFFSET(secondSolenoidPin), idle_solenoidPinMode_offset),
alternatorPin("Alternator control", CONFIG_PIN_OFFSETS(alternatorControl)),
checkEnginePin("checkEnginePin", CONFIG_PIN_OFFSETS(malfunctionIndicator)),
tachOut("tachOut", CONFIG_PIN_OFFSETS(tachOutput)),
triggerDecoderErrorPin("led: trigger debug", CONFIG_PIN_OFFSETS(triggerError))
{
tachOut.name = PROTOCOL_TACH_NAME;
hpfpValve.name = PROTOCOL_HPFP_NAME;
static_assert(efi::size(sparkNames) >= MAX_CYLINDER_COUNT, "Too many ignition pins");
static_assert(efi::size(trailNames) >= MAX_CYLINDER_COUNT, "Too many ignition pins");
static_assert(efi::size(injectorNames) >= MAX_CYLINDER_COUNT, "Too many injection pins");
for (int i = 0; i < MAX_CYLINDER_COUNT;i++) {
enginePins.coils[i].name = sparkNames[i];
enginePins.coils[i].shortName = sparkShortNames[i];
enginePins.trailingCoils[i].name = trailNames[i];
enginePins.trailingCoils[i].shortName = trailShortNames[i];
enginePins.injectors[i].injectorIndex = i;
enginePins.injectors[i].name = injectorNames[i];
enginePins.injectors[i].shortName = injectorShortNames[i];
}
static_assert(efi::size(auxValveShortNames) >= AUX_DIGITAL_VALVE_COUNT, "Too many aux valve pins");
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT;i++) {
enginePins.auxValve[i].name = auxValveShortNames[i];
}
}
/**
* Sets the value of the pin. On this layer the value is assigned as is, without any conversion.
*/
#define unregisterOutputIfPinChanged(output, pin) { \
if (isConfigurationChanged(pin)) { \
(output).deInit(); \
} \
}
#define unregisterOutputIfPinOrModeChanged(output, pin, mode) { \
if (isPinOrModeChanged(pin, mode)) { \
(output).deInit(); \
} \
}
bool EnginePins::stopPins() {
bool result = false;
for (int i = 0; i < MAX_CYLINDER_COUNT; i++) {
result |= coils[i].stop();
result |= injectors[i].stop();
result |= trailingCoils[i].stop();
}
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) {
result |= auxValve[i].stop();
}
return result;
}
void EnginePins::unregisterPins() {
stopInjectionPins();
stopIgnitionPins();
stopAuxValves();
#if EFI_ELECTRONIC_THROTTLE_BODY
unregisterEtbPins();
#endif /* EFI_ELECTRONIC_THROTTLE_BODY */
// todo: add pinMode
unregisterOutputIfPinChanged(sdCsPin, sdCardCsPin);
unregisterOutputIfPinChanged(accelerometerCs, LIS302DLCsPin);
for (int i = 0;i < FSIO_COMMAND_COUNT;i++) {
unregisterOutputIfPinChanged(fsioOutputs[i], fsioOutputPins[i]);
}
RegisteredOutputPin * pin = registeredOutputHead;
while (pin != nullptr) {
pin->unregister();
pin = pin->next;
}
}
void EnginePins::debug() {
RegisteredOutputPin * pin = registeredOutputHead;
while (pin != nullptr) {
efiPrintf("%s %d", pin->registrationName, pin->currentLogicValue);
pin = pin->next;
}
}
void EnginePins::startPins() {
#if EFI_ENGINE_CONTROL
startInjectionPins();
startIgnitionPins();
startAuxValves();
#endif /* EFI_ENGINE_CONTROL */
RegisteredOutputPin * pin = registeredOutputHead;
while (pin != nullptr) {
pin->init(PASS_ENGINE_PARAMETER_SIGNATURE);
pin = pin->next;
}
}
void EnginePins::reset() {
for (int i = 0; i < MAX_CYLINDER_COUNT;i++) {
injectors[i].reset();
coils[i].reset();
trailingCoils[i].reset();
}
}
void EnginePins::stopIgnitionPins() {
for (int i = 0; i < MAX_CYLINDER_COUNT; i++) {
unregisterOutputIfPinOrModeChanged(enginePins.coils[i], ignitionPins[i], ignitionPinMode);
unregisterOutputIfPinOrModeChanged(enginePins.trailingCoils[i], trailingCoilPins[i], ignitionPinMode);
}
}
void EnginePins::stopInjectionPins() {
for (int i = 0; i < MAX_CYLINDER_COUNT; i++) {
unregisterOutputIfPinOrModeChanged(enginePins.injectors[i], injectionPins[i], injectionPinMode);
}
}
void EnginePins::stopAuxValves() {
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) {
NamedOutputPin *output = &enginePins.auxValve[i];
// todo: do we need auxValveMode and reuse code?
if (isConfigurationChanged(auxValves[i])) {
(output)->deInit();
}
}
}
void EnginePins::startAuxValves() {
#if EFI_PROD_CODE
for (int i = 0; i < AUX_DIGITAL_VALVE_COUNT; i++) {
NamedOutputPin *output = &enginePins.auxValve[i];
// todo: do we need auxValveMode and reuse code?
if (isConfigurationChanged(auxValves[i])) {
output->initPin(output->name, engineConfiguration->auxValves[i]);
}
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::startIgnitionPins() {
#if EFI_PROD_CODE
for (size_t i = 0; i < engineConfiguration->specs.cylindersCount; i++) {
NamedOutputPin *trailingOutput = &enginePins.trailingCoils[i];
if (isPinOrModeChanged(trailingCoilPins[i], ignitionPinMode)) {
trailingOutput->initPin(trailingOutput->name, CONFIG(trailingCoilPins)[i], &CONFIG(ignitionPinMode));
}
NamedOutputPin *output = &enginePins.coils[i];
if (isPinOrModeChanged(ignitionPins[i], ignitionPinMode)) {
output->initPin(output->name, CONFIG(ignitionPins)[i], &CONFIG(ignitionPinMode));
}
}
#endif /* EFI_PROD_CODE */
}
void EnginePins::startInjectionPins() {
#if EFI_PROD_CODE
// todo: should we move this code closer to the injection logic?
for (size_t i = 0; i < engineConfiguration->specs.cylindersCount; i++) {
NamedOutputPin *output = &enginePins.injectors[i];
if (isPinOrModeChanged(injectionPins[i], injectionPinMode)) {
output->initPin(output->name, CONFIG(injectionPins)[i],
&CONFIG(injectionPinMode));
}
}
#endif /* EFI_PROD_CODE */
}
NamedOutputPin::NamedOutputPin() : OutputPin() {
}
NamedOutputPin::NamedOutputPin(const char *name) : OutputPin() {
this->name = name;
}
const char *NamedOutputPin::getName() const {
return name;
}
const char *NamedOutputPin::getShortName() const {
return shortName == nullptr ? name : shortName;
}
#if EFI_UNIT_TEST
extern bool verboseMode;
#endif // EFI_UNIT_TEST
void NamedOutputPin::setHigh() {
#if EFI_UNIT_TEST
if (verboseMode) {
efiPrintf("pin %s goes high", name);
}
#endif // EFI_UNIT_TEST
#if EFI_DEFAILED_LOGGING
// signal->hi_time = hTimeNow();
#endif /* EFI_DEFAILED_LOGGING */
// turn the output level ACTIVE
setValue(true);
#if EFI_ENGINE_SNIFFER
addEngineSnifferEvent(getShortName(), PROTOCOL_ES_UP);
#endif /* EFI_ENGINE_SNIFFER */
}
void NamedOutputPin::setLow() {
#if EFI_UNIT_TEST
if (verboseMode) {
efiPrintf("pin %s goes low", name);
}
#endif // EFI_UNIT_TEST
// turn off the output
setValue(false);
#if EFI_ENGINE_SNIFFER
addEngineSnifferEvent(getShortName(), PROTOCOL_ES_DOWN);
#endif /* EFI_ENGINE_SNIFFER */
}
InjectorOutputPin::InjectorOutputPin() : NamedOutputPin() {
reset();
injectorIndex = -1;
}
bool NamedOutputPin::stop() {
#if EFI_GPIO_HARDWARE
if (isInitialized() && getLogicValue()) {
setValue(false);
efiPrintf("turning off %s", name);
return true;
}
#endif /* EFI_GPIO_HARDWARE */
return false;
}
void InjectorOutputPin::reset() {
// If this injector was open, close it and reset state
if (overlappingCounter != 0) {
overlappingCounter = 0;
setValue(0);
}
// todo: this could be refactored by calling some super-reset method
currentLogicValue = 0;
}
IgnitionOutputPin::IgnitionOutputPin() {
reset();
}
void IgnitionOutputPin::reset() {
outOfOrder = false;
signalFallSparkId = 0;
}
OutputPin::OutputPin() {
modePtr = &DEFAULT_OUTPUT;
}
bool OutputPin::isInitialized() {
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
#if (BOARD_EXT_GPIOCHIPS > 0)
if (ext)
return true;
#endif /* (BOARD_EXT_GPIOCHIPS > 0) */
return port != NULL;
#else /* EFI_GPIO_HARDWARE */
return true;
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::toggle() {
setValue(!getLogicValue());
}
bool OutputPin::getAndSet(int logicValue) {
bool oldValue = getLogicValue();
setValue(logicValue);
return oldValue;
}
// This function is only used on real hardware
#if EFI_PROD_CODE
void OutputPin::setOnchipValue(int electricalValue) {
palWritePad(port, pin, electricalValue);
}
#endif // EFI_PROD_CODE
void OutputPin::setValue(int logicValue) {
#if ENABLE_PERF_TRACE
// todo: https://github.com/rusefi/rusefi/issues/1638
// ScopePerf perf(PE::OutputPinSetValue);
#endif // ENABLE_PERF_TRACE
#if EFI_UNIT_TEST
if (verboseMode) {
efiPrintf("pin goes %d", logicValue);
}
#endif // EFI_UNIT_TEST
// Always store the current logical value of the pin (so it can be
// used internally even if not connected to a real hardware pin)
currentLogicValue = logicValue;
// Nothing else to do if not configured
if (!isBrainPinValid(brainPin)) {
return;
}
efiAssertVoid(CUSTOM_ERR_6621, modePtr!=NULL, "pin mode not initialized");
pin_output_mode_e mode = *modePtr;
efiAssertVoid(CUSTOM_ERR_6622, mode <= OM_OPENDRAIN_INVERTED, "invalid pin_output_mode_e");
int electricalValue = getElectricalValue(logicValue, mode);
#if EFI_PROD_CODE
#if (BOARD_EXT_GPIOCHIPS > 0)
if (!this->ext) {
setOnchipValue(electricalValue);
} else {
/* external pin */
gpiochips_writePad(this->brainPin, logicValue);
/* TODO: check return value */
}
#else
setOnchipValue(electricalValue);
#endif
#else /* EFI_PROD_CODE */
setMockState(brainPin, electricalValue);
#endif /* EFI_PROD_CODE */
}
bool OutputPin::getLogicValue() const {
// Compare against 1 since it could also be INITIAL_PIN_STATE (which means logical 0, but we haven't initialized the pin yet)
return currentLogicValue == 1;
}
void OutputPin::setDefaultPinState(const pin_output_mode_e *outputMode) {
pin_output_mode_e mode = *outputMode;
/* may be*/UNUSED(mode);
assertOMode(mode);
this->modePtr = outputMode;
setValue(false); // initial state
}
void initOutputPins(DECLARE_ENGINE_PARAMETER_SIGNATURE) {
#if EFI_GPIO_HARDWARE
#if HAL_USE_SPI
enginePins.sdCsPin.initPin("SD CS", CONFIG(sdCardCsPin));
#endif /* HAL_USE_SPI */
#if EFI_SHAFT_POSITION_INPUT
// todo: migrate remaining OutputPin to RegisteredOutputPin in order to get consistent dynamic pin init/deinit
enginePins.debugTriggerSync.initPin("debug: sync", CONFIG(debugTriggerSync));
#endif // EFI_SHAFT_POSITION_INPUT
enginePins.o2heater.initPin("O2 heater", CONFIG(o2heaterPin));
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::initPin(const char *msg, brain_pin_e brainPin) {
initPin(msg, brainPin, &DEFAULT_OUTPUT);
}
void OutputPin::initPin(const char *msg, brain_pin_e brainPin, const pin_output_mode_e *outputMode, bool forceInitWithFatalError) {
if (!isBrainPinValid(brainPin)) {
return;
}
// Enter a critical section so that other threads can't change the pin state out from underneath us
chibios_rt::CriticalSectionLocker csl;
if (!forceInitWithFatalError && hasFirmwareError()) {
// Don't allow initializing more pins if we have a fatal error.
// Pins should have just been reset, so we shouldn't try to init more.
return;
}
// Check that this OutputPin isn't already assigned to another pin (reinit is allowed to change mode)
// To avoid this error, call deInit() first
if (isBrainPinValid(this->brainPin) && this->brainPin != brainPin) {
firmwareError(CUSTOM_OBD_PIN_CONFLICT, "outputPin [%s] already assigned, cannot reassign without unregister first", msg);
return;
}
if (*outputMode > OM_OPENDRAIN_INVERTED) {
firmwareError(CUSTOM_INVALID_MODE_SETTING, "%s invalid pin_output_mode_e %d %s",
msg,
*outputMode,
hwPortname(brainPin)
);
return;
}
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
iomode_t mode = (*outputMode == OM_DEFAULT || *outputMode == OM_INVERTED) ?
PAL_MODE_OUTPUT_PUSHPULL : PAL_MODE_OUTPUT_OPENDRAIN;
#if (BOARD_EXT_GPIOCHIPS > 0)
this->ext = false;
#endif
if (brain_pin_is_onchip(brainPin)) {
ioportid_t port = getHwPort(msg, brainPin);
int pin = getHwPin(msg, brainPin);
// Validate port
if (port == GPIO_NULL) {
firmwareError(OBD_PCM_Processor_Fault, "OutputPin::initPin got invalid port for pin idx %d", static_cast<int>(brainPin));
return;
}
this->port = port;
this->pin = pin;
}
#if (BOARD_EXT_GPIOCHIPS > 0)
else {
this->ext = true;
}
#endif
#endif // briefly leave the include guard because we need to set default state in tests
this->brainPin = brainPin;
// The order of the next two calls may look strange, which is a good observation.
// We call them in this order so that the pin is set to a known state BEFORE
// it's enabled. Enabling the pin then setting it could result in a (brief)
// mystery state being driven on the pin (potentially dangerous).
setDefaultPinState(outputMode);
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
efiSetPadMode(msg, brainPin, mode);
if (brain_pin_is_onchip(brainPin)) {
int actualValue = palReadPad(port, pin);
// we had enough drama with pin configuration in board.h and else that we shall self-check
// todo: handle OM_OPENDRAIN and OM_OPENDRAIN_INVERTED as well
if (*outputMode == OM_DEFAULT || *outputMode == OM_INVERTED) {
const int logicalValue =
(*outputMode == OM_INVERTED)
? !actualValue
: actualValue;
// if the pin was set to logical 1, then set an error and disable the pin so that things don't catch fire
if (logicalValue) {
firmwareError(OBD_PCM_Processor_Fault, "%s: startup pin state %s actual value=%d logical value=%d mode=%s", msg, hwPortname(brainPin), actualValue, logicalValue, getPin_output_mode_e(*outputMode));
OutputPin::deInit();
}
}
}
#endif /* EFI_GPIO_HARDWARE */
}
void OutputPin::deInit() {
// Unregister under lock - we don't want other threads mucking with the pin while we're trying to turn it off
chibios_rt::CriticalSectionLocker csl;
// nothing to do if not registered in the first place
if (!isBrainPinValid(brainPin)) {
return;
}
#if (BOARD_EXT_GPIOCHIPS > 0)
ext = false;
#endif // (BOARD_EXT_GPIOCHIPS > 0)
efiPrintf("unregistering %s", hwPortname(brainPin));
#if EFI_GPIO_HARDWARE && EFI_PROD_CODE
efiSetPadUnused(brainPin);
#endif /* EFI_GPIO_HARDWARE */
// Clear the pin so that it won't get set any more
brainPin = GPIO_UNASSIGNED;
}
#if EFI_GPIO_HARDWARE
// questionable trick: we avoid using 'getHwPort' and 'getHwPin' in case of errors in order to increase the changes of turning the LED
// by reducing stack requirement
ioportid_t criticalErrorLedPort;
ioportmask_t criticalErrorLedPin;
uint8_t criticalErrorLedState;
#ifndef LED_ERROR_BRAIN_PIN_MODE
#define LED_ERROR_BRAIN_PIN_MODE DEFAULT_OUTPUT
#endif /* LED_ERROR_BRAIN_PIN_MODE */
void initPrimaryPins() {
#if EFI_PROD_CODE
enginePins.errorLedPin.initPin("led: CRITICAL status", LED_CRITICAL_ERROR_BRAIN_PIN, &(LED_ERROR_BRAIN_PIN_MODE));
criticalErrorLedPort = getHwPort("CRITICAL", LED_CRITICAL_ERROR_BRAIN_PIN);
criticalErrorLedPin = getHwPin("CRITICAL", LED_CRITICAL_ERROR_BRAIN_PIN);
criticalErrorLedState = (LED_ERROR_BRAIN_PIN_MODE == INVERTED_OUTPUT) ? 0 : 1;
addConsoleAction("gpio_pins", EnginePins::debug);
#endif /* EFI_PROD_CODE */
}
/**
* This method is part of fatal error handling.
* The whole method is pretty naive, but that's at least something.
*/
void turnAllPinsOff(void) {
for (int i = 0; i < MAX_CYLINDER_COUNT; i++) {
enginePins.injectors[i].setValue(false);
enginePins.coils[i].setValue(false);
enginePins.trailingCoils[i].setValue(false);
}
}
#endif /* EFI_GPIO_HARDWARE */